Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Learn Mem ; 31(1-2)2024.
Artículo en Inglés | MEDLINE | ID: mdl-38286523

RESUMEN

The odor span task (OST) infers working memory capacity (WMC) by requiring rodents to discriminate between previously presented and session-novel odors to obtain a hidden food reward. Here, rats' responses to session-novel odors and food rewards were assessed to determine whether rats use mitigating strategies in the OST. Rats accurately responded to session-novel odors but also reliably responded to the food reward alone and performed at chance when both a session-novel odor and food reward were presented in separate locations. The inclusion of unscented sand in the cups holding the food reward significantly reduced the rats' responses to the food reward alone. Collectively, these results demonstrate the need for rigorous tests of potential mitigating strategies and hold wide implications for rodent odor discrimination-based behavioral tasks.


Asunto(s)
Memoria a Corto Plazo , Odorantes , Ratas , Animales , Memoria a Corto Plazo/fisiología , Señales (Psicología) , Motivación , Recompensa , Olfato/fisiología
2.
Eur J Neurosci ; 59(9): 2260-2275, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38411499

RESUMEN

The anterior retrosplenial cortex (aRSC) integrates multimodal sensory information into cohesive associative recognition memories. Little is known about how information is integrated during different learning phases (i.e., encoding and retrieval). Additionally, sex differences are observed in performance of some visuospatial memory tasks; however, inconsistent findings warrant more research. We conducted three experiments using the 1-h delay object-in-place (1-h OiP) test to assess recognition memory retrieval in male and female Long-Evans rats. (i) We found both sexes performed equally in three repeated 1-h OiP test sessions. (ii) We showed infusions of a mixture of muscimol/baclofen (GABAA/B receptor agonists) into the aRSC ~15-min prior to the test phase disrupted 1-h OiP in both sexes. (iii) We assessed the role of aRSC ionotropic glutamate receptors in 1-h OiP retrieval using another squad of cannulated rats and confirmed that infusions of either the competitive AMPA/Kainate receptor antagonist CNQX (3 mM) or competitive NMDA receptor antagonist AP-5 (30 mM) (volumes = 0.50 uL/side) significantly impaired 1-h OiP retrieval in both sexes compared to controls. Taken together, findings challenge reported sex differences and clearly establish a role for aRSC ionotropic glutamate receptors in short-term visuospatial recognition memory retrieval. Thus, modulating neural activity in the aRSC may alleviate some memory processing impairments in related disorders.


Asunto(s)
Muscimol , Ratas Long-Evans , Reconocimiento en Psicología , Animales , Masculino , Femenino , Ratas , Reconocimiento en Psicología/efectos de los fármacos , Reconocimiento en Psicología/fisiología , Muscimol/farmacología , Agonistas de Receptores de GABA-A/farmacología , Baclofeno/farmacología , Memoria a Corto Plazo/efectos de los fármacos , Memoria a Corto Plazo/fisiología , Receptores Ionotrópicos de Glutamato/metabolismo , Receptores Ionotrópicos de Glutamato/antagonistas & inhibidores , Recuerdo Mental/efectos de los fármacos , Recuerdo Mental/fisiología , Antagonistas de Aminoácidos Excitadores/farmacología , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Caracteres Sexuales , Agonistas de Receptores GABA-B/farmacología
3.
PLoS Pathog ; 18(9): e1010741, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36070309

RESUMEN

Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2) can cause the life-threatening acute respiratory disease called COVID-19 (Coronavirus Disease 2019) as well as debilitating multiorgan dysfunction that persists after the initial viral phase has resolved. Long COVID or Post-Acute Sequelae of COVID-19 (PASC) is manifested by a variety of symptoms, including fatigue, dyspnea, arthralgia, myalgia, heart palpitations, and memory issues sometimes affecting between 30% and 75% of recovering COVID-19 patients. However, little is known about the mechanisms causing Long COVID and there are no widely accepted treatments or therapeutics. After introducing the clinical aspects of acute COVID-19 and Long COVID in humans, we summarize the work in animals (mice, Syrian hamsters, ferrets, and nonhuman primates (NHPs)) to model human COVID-19. The virology, pathology, immune responses, and multiorgan involvement are explored. Additionally, any studies investigating time points longer than 14 days post infection (pi) are highlighted for insight into possible long-term disease characteristics. Finally, we discuss how the models can be leveraged for treatment evaluation, including pharmacological agents that are currently in human clinical trials for treating Long COVID. The establishment of a recognized Long COVID preclinical model representing the human condition would allow the identification of mechanisms causing disease as well as serve as a vehicle for evaluating potential therapeutics.


Asunto(s)
COVID-19 , Animales , COVID-19/complicaciones , Cricetinae , Hurones , Humanos , Mesocricetus , Ratones , SARS-CoV-2 , Síndrome Post Agudo de COVID-19
4.
Eur J Neurosci ; 55(4): 1063-1078, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-33370468

RESUMEN

There is significant interest in the use of cannabinoids for the treatment of many epilepsies including absence epilepsy (AE). Genetic Absence Epilepsy Rats from Strasbourg (GAERS) model many aspects of AE including the presence of spike-and-wave discharges (SWDs) on electroencephalogram (EEG) and behavioral comorbidities, such as elevated anxiety. However, the effects of cannabis plant-based phytocannabinoids have not been tested in GAERS. Therefore, we investigated how SWDs in GAERS are altered by the two most common phytocannabinoids, Δ9 -tetrahydrocannabinol (THC) and cannabidiol (CBD), and exposure to smoke from two different chemovars of cannabis. Animals were implanted with bipolar electrodes in the somatosensory cortex and EEGs were recorded for 2 hr. Injected THC (1-10 mg/kg, i.p.) dose-dependently increased SWDs to over 200% of baseline. In contrast, CBD (30-100 mg/kg, i.p.) produced a ~50% reduction in SWDs. Exposure to smoke from a commercially available chemovar of high-THC cannabis (Mohawk, Aphria Inc.) increased SWDs whereas a low-THC/high-CBD chemovar of cannabis (Treasure Island, Aphria Inc.) did not significantly affect SWDs in GAERS. Pre-treatment with a CB1R antagonist (SR141716A) did not prevent the high-THC cannabis smoke from increasing SWDs, suggesting that the THC-mediated increase may not be CB1R-dependent. Plasma concentrations of THC and CBD were similar to previously reported values following injection and smoke exposure. Compared to injected CBD, it appears Treasure Island did not increase plasma levels sufficiently to observe an anti-epileptic effect. Together these experiments provide initial evidence that acute phytocannabinoid administration exerts the biphasic modulation of SWDs and may differentially impact patients with AE.


Asunto(s)
Cannabidiol , Cannabinoides , Cannabis , Epilepsia Tipo Ausencia , Animales , Cannabidiol/farmacología , Agonistas de Receptores de Cannabinoides , Cannabinoides/farmacología , Dronabinol , Electroencefalografía , Epilepsia Tipo Ausencia/tratamiento farmacológico , Epilepsia Tipo Ausencia/genética , Humanos , Ratas , Ratas Wistar
5.
Neurobiol Learn Mem ; 192: 107624, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35513236

RESUMEN

Executive functions including working memory (WM) and attention are altered following Cannabis exposure in humans. To test for similar effects in a rodent model, we exposed adult male rats to acute Cannabis smoke before testing them on touchscreen-based tasks that assess these executive processes. The trial-unique, delayed nonmatching-to-location (TUNL) task was used to evaluate WM, task performance at different spatial pattern separations, and response latencies. The five-choice serial reaction time task (5-CSRTT) was used to measure attention, impulsivity, perseveration, and response latencies. Rats were exposed acutely to high- Δ9-tetrahydrocannabinol (THC), low-CBD (Mohawk) and low-THC, high-CBD (Treasure Island) strains of Cannabis smoke using a chamber inhalation system. The effects of Cannabis smoke were directly compared to systemic Δ9-THC injection (3.0 mg/kg; i.p.). TUNL task performance was significantly impaired following acute high-THC smoke exposure or THC injections, but not low-THC smoke exposure, with no effects on response latencies. Fewer total trials and selection trials were also performed following THC injections. Performance was poorer for smaller separation distances in all groups. Neither acute smoke exposure, nor injected THC, impacted attentional processes, impulsivity, perseverations, or response latencies in the 5-CSRTT. Pharmacokinetic analysis of rat plasma revealed significantly higher THC levels following injections than smoke exposure 30 min following treatment. Exposure to low-THC, high-CBD Cannabis smoke significantly increased CBD in plasma, relative to the other treatments. Taken together, our results suggest that WM processes as measured by the TUNL task are more sensitive to THC exposure than the attentional and impulsivity measures assessed using the 5-CSRTT.


Asunto(s)
Cannabidiol , Cannabis , Animales , Cannabidiol/farmacología , Agonistas de Receptores de Cannabinoides/farmacología , Dronabinol/farmacología , Masculino , Memoria a Corto Plazo , Ratas , Ratas Long-Evans , Tiempo de Reacción , Humo
6.
Learn Mem ; 27(2): 67-77, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31949038

RESUMEN

Working memory (WM), the capacity for short-term storage of small quantities of information for immediate use, is thought to depend on activity within the prefrontal cortex. Recent evidence indicates that the prefrontal neuronal activity supporting WM is driven by thalamocortical connections arising in mediodorsal thalamus (mdThal). However, the role of these connections has not been studied using olfactory stimuli leaving open the question of whether this circuit extends to all sensory modalities. Additionally, manipulations of the mdThal in olfactory memory tasks have yielded mixed results. In the present experiment, we investigated the role of connections between the rat medial prefrontal cortex (mPFC) and mdThal in the odor span task (OST) using a pharmacological contralateral disconnection technique. Inactivation of either the mPFC or mdThal alone both significantly impaired memory performance in the OST, replicating previous findings with the mPFC and confirming that the mdThal plays an essential role in intact OST performance. Contralateral disconnection of the two structures impaired OST performance in support of the idea that the OST relies on mPFC-mdThal connections, but ipsilateral control infusions also impaired performance, complicating this interpretation. We also performed a detailed analysis of rats' errors and foraging behavior and found a dissociation between mPFC and mdThal inactivation conditions. Inactivation of the mdThal and mPFC caused a significant reduction in the number of approaches rats made per odor, whereas only mdThal inactivation or mPFC-mdThal disconnection caused significant increases in choice latency. Our results confirm that the mdThal is necessary for performance of the OST and that it may critically interact with the mPFC to mediate OST performance. Additionally, we have provided evidence that the mPFC and mdThal play dissociable roles in mediating foraging behavior.


Asunto(s)
Conducta Animal/fisiología , Núcleo Talámico Mediodorsal/fisiología , Memoria a Corto Plazo/fisiología , Percepción Olfatoria/fisiología , Corteza Prefrontal/fisiología , Animales , Baclofeno/administración & dosificación , Agonistas de Receptores de GABA-A/administración & dosificación , Infusiones Parenterales , Masculino , Núcleo Talámico Mediodorsal/efectos de los fármacos , Muscimol/administración & dosificación , Corteza Prefrontal/efectos de los fármacos , Ratas , Ratas Long-Evans
7.
Learn Mem ; 27(6): 222-235, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32414940

RESUMEN

Perineuronal nets (PNNs) are specialized extracellular matrix structures that surround subsets of neurons throughout the central nervous system (CNS). They are made up of chondroitin sulfate proteoglycans (CSPGs), hyaluronan, tenascin-R, and many other link proteins that together make up their rigid and lattice-like structure. Modulation of PNNs can alter synaptic plasticity and thereby affect learning, memory, and cognition. In the present study, we degraded PNNs in the medial prefrontal (mPFC) and posterior parietal (PPC) cortices of Long-Evans rats using the enzyme chondroitinase ABC (ChABC), which cleaves apart CSPGs. We then measured the consequences of PNN degradation on spatial working memory (WM) with a trial-unique, non-matching-to location (TUNL) automated touchscreen task. All rats were trained with a standard 6 sec delay and 20 sec inter-trial interval (ITI) and then tested under four different conditions: a 6 sec delay, a variable 2 or 6 sec delay, a 2 sec delay with a 1 sec ITI (interference condition), and a 20 sec delay. Rats that received mPFC ChABC treatment initially performed TUNL with higher accuracy, more selection trials completed, and fewer correction trials completed compared to controls in the 20 sec delay condition but did not perform differently from controls in any other condition. Rats that received PPC ChABC treatment did not perform significantly differently from controls in any condition. Posthumous immunohistochemistry confirmed an increase in CSPG degradation products (C4S stain) in the mPFC and PPC following ChABC infusions while WFA staining intensity and parvalbumin positive neuron number were decreased following mPFC, but not PPC, ChABC infusions. These findings suggest that PNNs in the mPFC play a subtle role in spatial WM, but PNNs in the PPC do not. Furthermore, it appears that PNNs in the mPFC are involved in adapting to a challenging novel delay, but that they do not play an essential role in spatial WM function.


Asunto(s)
Condroitina ABC Liasa/farmacología , Proteoglicanos Tipo Condroitín Sulfato/efectos de los fármacos , Matriz Extracelular/efectos de los fármacos , Memoria a Corto Plazo/efectos de los fármacos , Lóbulo Parietal/efectos de los fármacos , Corteza Prefrontal/efectos de los fármacos , Desempeño Psicomotor/efectos de los fármacos , Memoria Espacial/efectos de los fármacos , Animales , Conducta Animal/efectos de los fármacos , Masculino , Ratas , Ratas Long-Evans , Factores de Tiempo
8.
J Anat ; 237(2): 367-378, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32266720

RESUMEN

Dentine- and enamel-forming cells secrete matrix in consistent rhythmic phases, resulting in the formation of successive microscopic growth lines inside tooth crowns and roots. Experimental studies of various mammals have proven that these lines are laid down in subdaily, daily (circadian), and multidaily rhythms, but it is less clear how these rhythms are initiated and maintained. In 2001, researchers reported that lesioning the so-called master biological clock, the suprachiasmatic nucleus (SCN), halted daily line formation in rat dentine, whereas subdaily lines persisted. More recently, a key clock gene (Bmal1) expressed in the SCN in a circadian manner was also found to be active in dentine- and enamel- secretory cells. To probe these potential neurological and local mechanisms for the production of rhythmic lines in teeth, we reexamined the role of the SCN in growth line formation in Wistar rats and investigated the presence of daily lines in Bmal1 knockout mice (Bmal1-/- ). In contrast to the results of the 2001 study, we found that both daily and subdaily growth lines persisted in rat dentine after complete or partial SCN lesion in the majority of individuals. In mice, after transfer into constant darkness, daily rhythms continued to manifest as incremental lines in the dentine of each Bmal1 genotype (wild-type, Bmal+/- , and Bmal1-/- ). These results affirm that the manifestation of biological rhythms in teeth is a robust phenomenon, imply a more autonomous role of local biological clocks in tooth growth than previously suggested, and underscore the need further to elucidate tissue-specific circadian biology and its role in incremental line formation. Investigations of this nature will strengthen an invaluable system for determining growth rates and calendar ages from mammalian hard tissues, as well as documenting the early lives of fossil hominins and other primates.


Asunto(s)
Relojes Biológicos/genética , Ritmo Circadiano/genética , Dentina/crecimiento & desarrollo , Factores de Transcripción ARNTL/genética , Animales , Ratones , Ratones Noqueados , Ratas , Ratas Wistar
9.
Clin Exp Pharmacol Physiol ; 47(9): 1530-1536, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32304254

RESUMEN

Insulin-mediated signalling in the brain is critical for neuronal functioning. Insulin resistance is implicated in the development of some neurological diseases, although changes associated with absence epilepsy have not been established yet. Therefore, we examined the major components of PI3K/Akt-mediated insulin signalling in cortical, thalamic, and hippocampal tissues collected from Genetic Absence Epilepsy Rats from Strasbourg (GAERS) and Non-Epileptic Control (NEC) rats. Insulin levels were also measured in plasma and cerebrospinal fluid (CSF). For the brain samples, the nuclear fraction (NF) and total homogenate (TH) were isolated and investigated for insulin signalling markers including insulin receptor beta (IRß), IR substrate-1 and 2 (IRS1 & 2), phosphatase and tensin homologue (PTEN), phosphoinositide 3-kinase phospho-85 alpha (PI3K p85α), phosphatidylinositol 4,5-bisphosphate, phosphatidylinositol (3,4,5)-trisphosphate, protein kinase B (PKB/Akt1/2/3), glucose transporter-1 and 4 (GLUT1 & 4) and glycogen synthase kinase-3ß (GSK3ß) using western blotting. A significant increase in PTEN and GSK3ß levels and decreased PI3K p85α and pAkt1/2/3 levels were observed in NF of GAERS cortical and hippocampal tissues. IRß, IRS1, GLUT1, and GLUT4 levels were significantly decreased in hippocampal TH of GAERS compared to NEC. A non-significant increase in insulin levels was observed in plasma and CSF of GAERS rats. An insulin sensitivity assay showed decreased p-Akt level in cortical and hippocampal tissues. Together, altered hippocampal insulin signalling was more prominent in NF and TH compared to cortical and thalamic regions in GAERS. Restoring insulin signalling may improve the pathophysiology displayed by GAERS, including the spike-and-wave discharges that relate to absence seizures in patients.


Asunto(s)
Ondas Encefálicas , Epilepsia Tipo Ausencia/metabolismo , Insulina/metabolismo , Rombencéfalo/metabolismo , Animales , Glucemia/metabolismo , Modelos Animales de Enfermedad , Epilepsia Tipo Ausencia/genética , Epilepsia Tipo Ausencia/fisiopatología , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Insulina/sangre , Proteínas Sustrato del Receptor de Insulina/metabolismo , Masculino , Fosfohidrolasa PTEN/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas Endogámicas , Receptor de Insulina/metabolismo , Rombencéfalo/fisiopatología , Transducción de Señal
10.
Eur J Neurosci ; 50(6): 3046-3059, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30889299

RESUMEN

Genetic Absence Epilepsy Rats from Strasbourg (GAERS) are a rodent model of childhood absence epilepsy (CAE) that display a gain-of-function mutation in the gene encoding the Cav3.2 T-type calcium channel. GAERS demonstrate heightened learning and delayed extinction of fear conditioning. Our objective in the present study was to examine the effects of the pan-T-type calcium channel blocker Z944 on the acquisition, consolidation and extinction of conditioned fear in GAERS and the non-epileptic control (NEC) strain. Z944 (10 mg/kg; ip) was administered 15 min prior to either acquisition, extinction day 1 (24 hr later), acquisition and extinction day 1, or during the consolidation (post-acquisition) of tone-cued fear conditioning. Extinction was examined 24 and 48 hr after conditioning. In drug naïve GAERS, increased freezing during the acquisition and extinction phases of fear conditioning was found. Short-term effects of Z944 on performance were observed as Z944 increased freezing during testing on the day it was administered. Z944 administered prior to the acquisition phase had a long-term effect on extinction. Specifically, both GAERS and NECs showed a decrease in freezing during extinction relative to drug naïve GAERS and NEC rats respectively. Regardless of strain or treatment, female rats showed reduced extinction of fear relative to male rats. These results demonstrate that T-type calcium channels contribute to the neural systems that mediate the learning and memory of conditioned fear. Overall, these findings suggest that T-type calcium channel blockers show promise in the treatment of learning impairments observed in disorders such as CAE.


Asunto(s)
Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo T/genética , Condicionamiento Clásico/efectos de los fármacos , Epilepsia Tipo Ausencia/genética , Extinción Psicológica/efectos de los fármacos , Miedo/efectos de los fármacos , Piperidinas/farmacología , Animales , Modelos Animales de Enfermedad , Femenino , Masculino , Memoria/efectos de los fármacos , Ratas
11.
Neurobiol Learn Mem ; 159: 16-23, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30731234

RESUMEN

Working memory (WM), the capacity for short-term storage and manipulation of small quantities of information, depends on fronto-parietal circuits. However, the function of the posterior parietal cortex (PPC) in WM has gone relatively understudied in rodents. Recent evidence calls into question whether the PPC is necessary for all forms of WM. Thus, the present experiment examined the role of the rat PPC in the Trial-Unique Non-matching-to-Location (TUNL) task, a touchscreen-based visuospatial WM task that relies on the rat medial prefrontal cortex (mPFC). Temporary inactivation of the PPC caused by bilateral infusions of muscimol and baclofen significantly impaired accuracy and increased the number of correction trials performed, indicating that the PPC is necessary for performance of TUNL. Additionally, we investigated the effects of blocking NMDA or non-NMDA parietal ionotropic glutamate receptors on TUNL and found that, in contrast to the prefrontal cortex, NMDA receptors in the PPC are not necessary for TUNL performance, whereas blockade of AMPA/Kainate receptors significantly impaired accuracy. These results indicate that performance of the TUNL task depends on the PPC but that NMDA receptor signaling within this brain area is not necessary for intact performance.


Asunto(s)
Conducta Animal/fisiología , Memoria a Corto Plazo/fisiología , Lóbulo Parietal/metabolismo , Desempeño Psicomotor/fisiología , Receptores AMPA/fisiología , Receptores de Ácido Kaínico/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , Percepción Espacial/fisiología , Percepción Visual/fisiología , Animales , Baclofeno/farmacología , Conducta Animal/efectos de los fármacos , Agonistas del GABA/farmacología , Masculino , Memoria a Corto Plazo/efectos de los fármacos , Muscimol/farmacología , Lóbulo Parietal/efectos de los fármacos , Desempeño Psicomotor/efectos de los fármacos , Ratas , Ratas Long-Evans , Receptores AMPA/efectos de los fármacos , Receptores de Ácido Kaínico/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Percepción Espacial/efectos de los fármacos , Percepción Visual/efectos de los fármacos
12.
Can J Psychiatry ; 64(1): 5-17, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-29742910

RESUMEN

Schizophrenia is a heterogeneous psychiatric disorder that is poorly treated with current therapies. In this brief review, we provide an update regarding the use of animal models to study schizophrenia in an attempt to understand its aetiology and develop novel therapeutic strategies. Tremendous progress has been made developing and validating rodent models that replicate the aetiologies, brain pathologies, and behavioural abnormalities associated with schizophrenia in humans. Here, models are grouped into 3 categories-developmental, drug induced, and genetic-to reflect the heterogeneous risk factors associated with schizophrenia. Each of these models is associated with varied but overlapping pathophysiology, endophenotypes, behavioural abnormalities, and cognitive impairments. Studying schizophrenia using multiple models will permit an understanding of the core features of the disease, thereby facilitating preclinical research aimed at the development and validation of better pharmacotherapies to alter the progression of schizophrenia or alleviate its debilitating symptoms.


Asunto(s)
Modelos Animales de Enfermedad , Esquizofrenia/etiología , Animales , Esquizofrenia/patología , Esquizofrenia/fisiopatología , Esquizofrenia/terapia
13.
Learn Mem ; 25(7): 317-324, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29907639

RESUMEN

The roles of low-voltage-activated (T-type) calcium channels in brain diseases have been studied extensively. Less is known regarding the involvement of T-type channels in cognition and behavior. Sensory integration (SI) is a cognitive process whereby the brain uses unimodal or multimodal sensory features to create a comprehensive representation of the environment. The multisensory object oddity (MSO) task assesses SI using combinations of sensory features of objects, either in the same or different sensory modalities. The regulation of SI involves the orbitofrontal cortex (OFC), an area which shows high levels of T-type calcium channel expression. We tested the effects of blocking T-type calcium channels on the MSO task with the selective T-type antagonist, Z944 (5 mg/kg; i.p. systemic; 100 or 500 µM OFC infusion), in male Long Evans rats. With systemic treatment, Z944 impaired the visual and visual-olfactory versions of the task. Infusion of 100 and 500 µM Z944 produced deficits in the olfactory version of the task. In addition, only vehicle-infused, but not Z944-infused, rats showed significant performance above chance for all task variants. Thus, the present results suggest that T-type calcium channels in OFC are involved in SI of features in an oddity task. Given that unimodal SI was disrupted by OFC infusions of Z944, the deficits in the multimodal task must be interpreted with caution. As SI is disrupted in psychiatric disorders, further investigations elucidating the brain regions implicated in SI regulation by T-type calcium channels may help inform therapeutic development for those suffering from SI impairments.


Asunto(s)
Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo T/fisiología , Percepción Olfatoria/fisiología , Corteza Prefrontal/fisiología , Desempeño Psicomotor/fisiología , Percepción Visual/fisiología , Animales , Bloqueadores de los Canales de Calcio/administración & dosificación , Canales de Calcio Tipo T/efectos de los fármacos , Masculino , Percepción Olfatoria/efectos de los fármacos , Piperidinas/farmacología , Corteza Prefrontal/efectos de los fármacos , Desempeño Psicomotor/efectos de los fármacos , Ratas , Ratas Long-Evans , Percepción Visual/efectos de los fármacos
14.
Laterality ; 23(5): 505-516, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28899210

RESUMEN

Research in asymmetrical visuospatial attention has identified a leftward bias in the general population across a variety of measures including visual attention and line-bisection tasks. In addition, increases in rightward collisions, or bumping, during visuospatial navigation tasks have been demonstrated in real world and virtual environments. However, little research has investigated these biases beyond the laboratory. The present study uses a semi-naturalistic approach and the online video game streaming service Twitch to examine navigational errors and assaults as skilled action video game players (n = 60) compete in Counter Strike: Global Offensive. This study showed a significant rightward bias in both fatal assaults and navigational errors. Analysis using the in-game ranking system as a measure of skill failed to show a relationship between bias and skill. These results suggest that a leftward visuospatial bias may exist in skilled players during online video game play. However, the present study was unable to account for some factors such as environmental symmetry and player handedness. In conclusion, video game streaming is a promising method for behavioural research in the future, however further study is required before one can determine whether these results are an artefact of the method applied, or representative of a genuine rightward bias.


Asunto(s)
Atención , Lateralidad Funcional , Percepción Espacial , Navegación Espacial , Juegos de Video , Percepción Visual , Femenino , Humanos , Internet , Masculino , Competencia Profesional , Grabación en Video
15.
Learn Mem ; 24(6): 262-266, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28507036

RESUMEN

The trial-unique, delayed nonmatching-to-location (TUNL) task is a recently developed behavioral task that measures spatial working memory and a form of pattern separation in touchscreen-equipped operant conditioning chambers. Limited information exists regarding the neurotransmitters and neural substrates involved in the task. The present experiments tested the effects of systemic and intracranial injections of NMDA receptor antagonists on the TUNL task. After training, male Long Evans rats systemically injected with the competitive NMDA receptor antagonist CPP (10 mg/kg) had impaired accuracy regardless of the degree of stimuli separation or length of delay between the sample and test phases. Injections of Ro 25-6981 (6 or 10 mg/kg), an antagonist selective for GluN2B subunit-containing NMDA receptors, did not affect accuracy on the task. Direct infusion of the competitive NMDA receptor antagonist AP5 into mPFC or dmSTR reduced overall accuracy on the TUNL task. These results demonstrate that TUNL task performance depends on NMDA receptors within the mPFC and dmSTR.


Asunto(s)
Condicionamiento Operante/fisiología , Cuerpo Estriado/fisiología , Corteza Prefrontal/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo , Tacto/fisiología , Animales , Cefalosporinas/farmacología , Conducta de Elección , Ciprofloxacina/análogos & derivados , Ciprofloxacina/farmacología , Cuerpo Estriado/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Masculino , Piperazinas/farmacología , Corteza Prefrontal/efectos de los fármacos , Ratas , Ratas Long-Evans , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Percepción Espacial/efectos de los fármacos , Percepción Espacial/fisiología , Valina/análogos & derivados , Valina/farmacología
16.
Learn Mem ; 24(10): 524-531, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28916627

RESUMEN

Working memory is involved in the maintenance and manipulation of information essential for complex cognition. While the neural substrates underlying working memory capacity have been studied in humans, considerably less is known about the circuitry mediating working memory capacity in rodents. Therefore, the present experiments tested the involvement of medial prefrontal cortex (mPFC) and dorsal striatum (STR) in the odor span task (OST), a task proposed to assay working memory capacity in rodents. Initially, Long Evans rats were trained to dig in scented sand for food following a serial delayed nonmatching-to-sample rule. Temporary inactivation of dorsomedial (dm) STR significantly reduced span in well trained rats. Inactivation of mPFC or contralateral disconnection of the mPFC and dmSTR also reduced span. Infusing the GluN2B-containing NMDA receptor antagonist Ro 25-6981 into mPFC did not affect span; however, span was significantly reduced following bilateral Ro 25-6981 infusions into dmSTR or contralateral disconnection of mPFC (inactivation) and dmSTR (Ro 25-6981). These results suggest that span capacity in rats depends on GluN2B-containing NMDA receptor-dependent interactions between the mPFC and the dmSTR. Therefore, interventions targeting this circuit may improve the working memory capacity impairments in patients with schizophrenia, Alzheimer's disease, and Parkinson's disease.


Asunto(s)
Cuerpo Estriado/metabolismo , Memoria a Corto Plazo/fisiología , Percepción Olfatoria/fisiología , Corteza Prefrontal/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Catéteres de Permanencia , Cuerpo Estriado/efectos de los fármacos , Antagonistas de Aminoácidos Excitadores/farmacología , Agonistas de Receptores de GABA-A/farmacología , Masculino , Memoria a Corto Plazo/efectos de los fármacos , Muscimol/farmacología , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/metabolismo , Pruebas Neuropsicológicas , Odorantes , Percepción Olfatoria/efectos de los fármacos , Fenoles/farmacología , Piperidinas/farmacología , Corteza Prefrontal/efectos de los fármacos , Ratas Long-Evans , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores
17.
Neurobiol Learn Mem ; 141: 150-156, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28434949

RESUMEN

Maternal immune activation during pregnancy is an environmental risk factor for psychiatric illnesses such as schizophrenia in the offspring. Patients with schizophrenia display an array of cognitive symptoms, including impaired working memory capacity. Rodent models have been developed to understand the relationship between maternal immune activation and the cognitive symptoms of schizophrenia. The present experiment was designed to test whether maternal immune activation with the viral mimetic polyinosinic:polycytidylic acid (polyI:C) during pregnancy affects working memory capacity of the offspring. Pregnant Long Evans rats were treated with either saline or polyI:C (4mg/kg; i.v.) on gestational day 15. Male offspring of the litters (2-3months of age) were subsequently trained on a nonmatching-to-sample task with odors. After a criterion was met, the rats were tested on the odor span task, which requires rats to remember an increasing span of different odors to receive food reward. Rats were tested using delays of approximately 40s during the acquisition of the task. Importantly, polyI:C- and saline-treated offspring did not differ in performance of the nonmatching-to-sample task suggesting that both groups could perform a relatively simple working memory task. In contrast, polyI:C-treated offspring had reduced span capacity in the middle and late phases of odor span task acquisition. After task acquisition, the rats were tested using the 40s delay and a 10min delay. Both groups showed a delay-dependent decrease in span, although the polyI:C-treated offspring had significantly lower spans regardless of delay. Our results support the validity of the maternal immune activation model for studying the cognitive symptoms of neurodevelopmental disorders such as schizophrenia.


Asunto(s)
Sistema Inmunológico/inmunología , Inductores de Interferón/farmacología , Memoria a Corto Plazo/fisiología , Poli I-C/farmacología , Efectos Tardíos de la Exposición Prenatal/psicología , Animales , Femenino , Sistema Inmunológico/efectos de los fármacos , Memoria a Corto Plazo/efectos de los fármacos , Odorantes , Embarazo , Efectos Tardíos de la Exposición Prenatal/inmunología , Ratas , Ratas Long-Evans
18.
Neurobiol Dis ; 94: 106-15, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27282256

RESUMEN

Childhood absence epilepsy (CAE) is often comorbid with behavioral and cognitive symptoms, including impaired visual memory. Genetic Absence Epilepsy Rats from Strasbourg (GAERS) is an animal model closely resembling CAE; however, cognition in GAERS is poorly understood. Crossmodal object recognition (CMOR) is a recently developed memory task that examines not only purely visual and tactile memory, but also requires rodents to integrate sensory information about objects gained from tactile exploration to enable visual recognition. Both the visual and crossmodal variations of the CMOR task rely on the perirhinal cortex, an area with dense expression of T-type calcium channels. GAERS express a gain-in-function missense mutation in the Cav3.2 T-type calcium channel gene. Therefore, we tested whether the T-type calcium channel blocker Z944 dose dependently (1, 3, 10mg/kg; i.p.) altered CMOR memory in GAERS compared to the non-epileptic control (NEC) strain. GAERS demonstrated recognition memory deficits in the visual and crossmodal variations of the CMOR task that were reversed by the highest dose of Z944. Electroencephalogram recordings determined that deficits in CMOR memory in GAERS were not the result of seizures during task performance. In contrast, NEC showed a decrease in CMOR memory following Z944 treatment. These findings suggest that T-type calcium channels mediate CMOR in both the GAERS and NEC strains. Future research into the therapeutic potential of T-type calcium channel regulation may be particularly fruitful for the treatment of CAE and other disorders characterized by visual memory deficits.


Asunto(s)
Acetamidas/farmacología , Benzamidas/farmacología , Canales de Calcio Tipo T/efectos de los fármacos , Epilepsia Tipo Ausencia , Trastornos de la Memoria , Memoria/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Electroencefalografía/métodos , Epilepsia Tipo Ausencia/tratamiento farmacológico , Epilepsia Tipo Ausencia/genética , Femenino , Masculino , Trastornos de la Memoria/tratamiento farmacológico , Piperidinas , Tacto/fisiología
19.
Eur J Neurosci ; 43(1): 25-40, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26490879

RESUMEN

Behavioural, neurological, and genetic similarities exist in epilepsies, their psychiatric comorbidities, and various psychiatric illnesses, suggesting common aetiological factors. Rodent models of epilepsy are used to characterize the comorbid symptoms apparent in epilepsy and their neurobiological mechanisms. The present study was designed to assess Pavlovian fear conditioning and latent inhibition in a polygenetic rat model of absence epilepsy, i.e. Genetic Absence Epilepsy Rats from Strasbourg (GAERS) and the non-epileptic control (NEC) strain. Electrophysiological recordings confirmed the presence of spike-wave discharges in young adult GAERS but not NEC rats. A series of behavioural tests designed to assess anxiety-like behaviour (elevated plus maze, open field, acoustic startle response) and cognition (Pavlovian conditioning and latent inhibition) was subsequently conducted on male and female offspring. Results showed that GAERS exhibited significantly higher anxiety-like behaviour, a characteristic reported previously. In addition, using two protocols that differed in shock intensity, we found that both sexes of GAERS displayed exaggerated cued and contextual Pavlovian fear conditioning and impaired fear extinction. Fear reinstatement to the conditioned stimuli following unsignalled footshocks did not differ between the strains. Male GAERS also showed impaired latent inhibition in a paradigm using Pavlovian fear conditioning, suggesting that they may have altered attention, particularly related to previously irrelevant stimuli in the environment. Neither the female GAERS nor NEC rats showed evidence of latent inhibition in our paradigm. Together, the results suggest that GAERS may be a particularly useful model for assessing therapeutics designed to improve the emotional and cognitive disturbances associated with absence epilepsy.


Asunto(s)
Ansiedad/fisiopatología , Condicionamiento Clásico/fisiología , Modelos Animales de Enfermedad , Epilepsia Tipo Ausencia/fisiopatología , Epilepsia Tipo Ausencia/psicología , Miedo/fisiología , Potenciales de Acción , Animales , Ansiedad/etiología , Reacción de Prevención/fisiología , Comorbilidad , Electroencefalografía , Epilepsia Tipo Ausencia/complicaciones , Epilepsia Tipo Ausencia/genética , Extinción Psicológica/fisiología , Femenino , Humanos , Masculino , Inhibición Prepulso , Ratas , Reflejo de Sobresalto , Corteza Somatosensorial/fisiopatología
20.
Nat Rev Neurosci ; 11(7): 459-73, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20559335

RESUMEN

Long-term depression (LTD) in the CNS has been the subject of intense investigation as a process that may be involved in learning and memory and in various pathological conditions. Several mechanistically distinct forms of this type of synaptic plasticity have been identified and their molecular mechanisms are starting to be unravelled. Most studies have focused on forms of LTD that are triggered by synaptic activation of either NMDARs (N-methyl-D-aspartate receptors) or metabotropic glutamate receptors (mGluRs). Converging evidence supports a crucial role of LTD in some types of learning and memory and in situations in which cognitive demands require a flexible response. In addition, LTD may underlie the cognitive effects of acute stress, the addictive potential of some drugs of abuse and the elimination of synapses in neurodegenerative diseases.


Asunto(s)
Sistema Nervioso Central/fisiología , Potenciación a Largo Plazo/fisiología , Depresión Sináptica a Largo Plazo/fisiología , Plasticidad Neuronal/fisiología , Animales , Fármacos actuantes sobre Aminoácidos Excitadores/farmacología , Fármacos actuantes sobre Aminoácidos Excitadores/uso terapéutico , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/fisiopatología , Receptores de N-Metil-D-Aspartato/fisiología , Transducción de Señal/fisiología , Trastornos Relacionados con Sustancias/tratamiento farmacológico , Trastornos Relacionados con Sustancias/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA