Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Intern Med ; 294(3): 336-346, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37157165

RESUMEN

BACKGROUND: Neurotensin (NT), an intestinal peptide able to promote fat absorption, is implicated in the pathogenesis of obesity. Increased levels of proneurotensin (pro-NT), a stable NT precursor fragment, have been found in subjects with nonalcoholic fatty liver disease (NAFLD); however, whether higher pro-NT levels are associated with an increased NAFLD risk independently of other metabolic risk factors is unsettled. METHODS: Ultrasound-defined presence of NAFLD was assessed on 303 subjects stratified into tertiles according to fasting pro-NT levels. The longitudinal association between pro-NT levels and NAFLD was explored on the study participants without NAFLD at baseline reexamined after 5 years of follow-up (n = 124). RESULTS: Individuals with higher pro-NT levels exhibited increased adiposity, a worse lipid profile, and insulin sensitivity as compared to the lowest tertile of pro-NT. Prevalence of NAFLD was progressively increased in the intermediate and highest pro-NT tertile as compared to the lowest tertile. In a logistic regression analysis adjusted for several confounders, individuals with higher pro-NT levels displayed a raised risk of having NAFLD (OR = 3.43, 95%CI = 1.48-7.97, p = 0.004) than those in the lowest pro-NT tertile. Within the study cohort without NAFLD at baseline, subjects with newly diagnosed NAFLD at follow-up exhibited higher baseline pro-NT levels than those without incident NAFLD. In a cox hazard regression analysis model adjusted for anthropometric and metabolic parameters collected at baseline and follow-up visit, higher baseline pro-NT levels were associated with an increased risk of incident NAFLD (HR = 1.52, 95%CI = 1.017-2.282, p = 0.04). CONCLUSION: Higher pro-NT levels are a predictor of NAFLD independent of other metabolic risk factors.


Asunto(s)
Neurotensina , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/epidemiología , Factores de Riesgo , Adiposidad , Obesidad
2.
Int J Mol Sci ; 23(24)2022 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-36555798

RESUMEN

Recent studies suggest a pathogenetic association between metabolic disturbances, including type 2 diabetes (T2DM), and cognitive decline and indicate that T2DM may represent a risk factor for Alzheimer's disease (AD). There are a number of experimental studies presenting evidence that ranolazine, an antianginal drug, acts as a neuroprotective drug. The aim of the present study was to evaluate the effects of ranolazine on hippocampal neurodegeneration and astrocytes activation in a T2DM rat model. Diabetes was induced by a high fat diet (HFD) and streptozotocin (STZ) injection. Animals were divided into the following groups: HFD/STZ + Ranolazine, HFD/STZ + Metformin, HFD/STZ + Vehicle, NCD + Vehicle, NCD + Ranolazine and NCD + Metformin. The presence of neurodegeneration was evaluated in the hippocampal cornus ammonis 1 (CA1) region by cresyl violet staining histological methods, while astrocyte activation was assessed by western blot analysis. Staining with cresyl violet highlighted a decrease in neuronal density and cell volume in the hippocampal CA1 area in diabetic HFD/STZ + Vehicle rats, while ranolazine and metformin both improved T2DM-induced neuronal loss and neuronal damage. Moreover, there was an increased expression of GFAP in the HFD/STZ + Vehicle group compared to the treated diabetic groups. In conclusion, in the present study, we obtained additional evidence supporting the potential use of ranolazine to counteract T2DM-associated cognitive decline.


Asunto(s)
Diabetes Mellitus Tipo 2 , Encefalitis , Metformina , Enfermedades no Transmisibles , Ratas , Animales , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Ranolazina/farmacología , Ranolazina/uso terapéutico , Metformina/farmacología , Metformina/uso terapéutico , Dieta Alta en Grasa/efectos adversos , Estreptozocina
3.
Cardiovasc Diabetol ; 17(1): 31, 2018 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-29463262

RESUMEN

BACKGROUND: Clinical complications associated with atherosclerotic plaques arise from luminal obstruction due to plaque growth or destabilization leading to rupture. We previously demonstrated that overexpression of insulin receptor isoform A (IRA) and insulin-like growth factor-I receptor (IGF-IR) confers a proliferative and migratory advantage to vascular smooth muscle cells (VSMCs) promoting plaque growth in early stages of atherosclerosis. However, the role of insulin receptor (IR) isoforms, IGF-IR or insulin-like growth factor-II receptor (IGF-IIR) in VSMCs apoptosis during advanced atherosclerosis remains unclear. METHODS: We evaluated IR isoforms expression in human carotid atherosclerotic plaques by consecutive immunoprecipitations of insulin receptor isoform B (IRB) and IRA. Western blot analysis was performed to measure IGF-IR, IGF-IIR, and α-smooth muscle actin (α-SMA) expression in human plaques. The expression of those proteins, as well as the presence of apoptotic cells, was analyzed by immunohistochemistry in experimental atherosclerosis using BATIRKO; ApoE-/- mice, a model showing more aggravated vascular damage than ApoE-/- mice. Finally, apoptosis of VSMCs bearing IR (IRLoxP+/+ VSMCs), or not (IR-/- VSMCs), expressing IRA (IRA VSMCs) or expressing IRB (IRB VSMCs), was assessed by Western blot against cleaved caspase 3. RESULTS: We observed a significant decrease of IRA/IRB ratio in human complicated plaques as compared to non-complicated regions. Moreover, complicated plaques showed a reduced IGF-IR expression, an increased IGF-IIR expression, and lower levels of α-SMA indicating a loss of VSMCs. In experimental atherosclerosis, we found a significant decrease of IRA with an increased IRB expression in aorta from 24-week-old BATIRKO; ApoE-/- mice. Furthermore, atherosclerotic plaques from BATIRKO; ApoE-/- mice had less VSMCs content and higher number of apoptotic cells. In vitro experiments showed that IGF-IR inhibition by picropodophyllin induced apoptosis in VSMCs. Apoptosis induced by thapsigargin was lower in IR-/- VSMCs expressing higher IGF-IR levels as compared to IRLoxP+/+ VSMCs. Finally, IRB VSMCs are more prone to thapsigargin-induced apoptosis than IRA or IRLoxP+/+ VSMCs. CONCLUSIONS: In advanced human atherosclerosis, a reduction of IRA/IRB ratio, decreased IGF-IR expression, or increased IGF-IIR may contribute to VSMCs apoptosis, promoting plaque instability and increasing the risk of plaque rupture and its clinical consequences.


Asunto(s)
Enfermedades de la Aorta/metabolismo , Enfermedades de las Arterias Carótidas/metabolismo , Músculo Liso Vascular/metabolismo , Placa Aterosclerótica , Receptor de Insulina/metabolismo , Receptores de Somatomedina/metabolismo , Anciano , Anciano de 80 o más Años , Animales , Antígenos CD/metabolismo , Aorta Torácica/metabolismo , Aorta Torácica/patología , Enfermedades de la Aorta/genética , Enfermedades de la Aorta/patología , Apoptosis , Arterias Carótidas/metabolismo , Arterias Carótidas/patología , Enfermedades de las Arterias Carótidas/patología , Línea Celular , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados para ApoE , Persona de Mediana Edad , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Isoformas de Proteínas , Receptor IGF Tipo 1/metabolismo , Receptor IGF Tipo 2/metabolismo , Rotura Espontánea
4.
Biomedicines ; 12(2)2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38398053

RESUMEN

Background and Objectives: The NUCB2 gene and its polymorphisms were identified as novel players in the regulation of food intake, potentially leading to obesity (OBE) and altered eating behaviors. Naltrexone/bupropion SR (NB) showed good efficacy and tolerability for treating OBE and altered eating behaviors associated with binge eating disorder (BED). This prospective study investigates the influence of NUCB2 gene polymorphism on NB treatment response in OBE and BED. Materials and Methods: Body mass index (BMI), eating (EDE-Q, BES, NEQ, GQ, Y-FAS 2.0) and general psychopathology (BDI, STAI-S) were evaluated at baseline (t0) and after 16 weeks (t1) of NB treatment in patients with OBE and BED (Group 1; N = 22) vs. patients with OBE without BED (Group 2; N = 20). Differences were evaluated according to the rs757081 NUCB2 gene polymorphism. Results: NUCB2 polymorphism was equally distributed between groups. Although weight at t0 was higher in Group 1, weight loss was similar at t1 in both groups. BMI was not influenced by NUCB2 polymorphism. In Group 1, the CG-genotype reported significant improvement in eating psychopathology while the GG-genotype reported improvement only for FA. No differences were observed in Group 2. Conclusions: Patients diagnosed with BED and treated with NB exhibited a more favorable treatment response within the CG-genotype of the NUCB2 polymorphism.

5.
Obesity (Silver Spring) ; 31(3): 724-731, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36746764

RESUMEN

OBJECTIVE: Prior evidence indicates that individuals with obesity have an accelerated intestinal glucose absorption. This cross-sectional study evaluated whether those with overweight or obesity display higher duodenal protein levels of the glucose carriers sodium-glucose cotransporter 1 (SGLT-1), glucose transporter 2 (GLUT-2), and glucose transporter 5 (GLUT-5). METHODS: SGLT-1, GLUT-2, and GLUT-5 protein levels were assessed on duodenal mucosa biopsies of 52 individuals without diabetes categorized on the basis of their BMI as lean, with overweight, or with obesity. RESULTS: Individuals with overweight and obesity exhibited progressively increased duodenal protein levels of SGLT-1 and GLUT-5 as compared with the lean group. Conversely, no differences in duodenal GLUT-2 abundance were found among the three groups. Univariate analysis showed that SGLT-1 and GLUT-5 protein levels were positively correlated with BMI, waist circumference, 1-hour post-load glucose, fasting and post-load insulin, and insulin secretion and resistance levels. Furthermore, a positive relationship was detected between intestinal GLUT-5 levels and serum uric acid concentrations, a product of fructose metabolism known to be involved in the pathogenesis of obesity and its complications. CONCLUSIONS: Individuals with overweight and obesity display enhanced duodenal SGLT-1 and GLUT-5 abundance, which correlates with increased postprandial glucose concentrations, insulin resistance, and hyperinsulinemia.


Asunto(s)
Sobrepeso , Transportador 1 de Sodio-Glucosa , Humanos , Estudios Transversales , Duodeno/metabolismo , Glucosa/metabolismo , Transportador de Glucosa de Tipo 5 , Obesidad , Transportador 1 de Sodio-Glucosa/metabolismo , Ácido Úrico
6.
Nutrients ; 15(2)2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36678225

RESUMEN

Nesfatin-1 is a new anorexigenic neuropeptide involved in the regulation of hunger/satiety, eating, and affective disorders. We aimed to investigate nesfatin-1 secretion in vitro, in murine adipose cells, and in human adipose fat samples, as well as to assess the link between circulating nesfatin-1 levels, NUCB2 and Fat Mass and Obesity Gene (FTO) polymorphisms, BMI, Eating Disorders (EDs), and pathological behaviors. Nesfatin-1 secretion was evaluated both in normoxic fully differentiated 3T3-L1 mouse adipocytes and after incubation under hypoxic conditions for 24 h. Omental Visceral Adipose tissue (VAT) specimens of 11 obese subjects, and nesfatin-1 serum levels' evaluation, eating behaviors, NUCB2 rs757081, and FTO rs9939609 polymorphisms of 71 outpatients seeking treatment for EDs with different Body Mass Index (BMI) were studied. Significantly higher levels of nesfatin-1 were detected in hypoxic 3T3-L1 cultured adipocytes compared to normoxic ones. Nesfatin-1 was highly detectable in the VAT of obese compared to normal-weight subjects. Nesfatin-1 serum levels did not vary according to BMI, sex, and EDs diagnosis, but correlations with grazing; emotional, sweet, and binge eating; hyperphagia; social eating; childhood obesity were evident. Obese subjects with CG genotype NUCB2 rs757081 and AT genotype FTO rs9939609 polymorphisms had higher nesfatin-1 levels. It could represent a new biomarker of EDs comorbidity among obese patients.


Asunto(s)
Trastorno por Atracón , Obesidad Infantil , Animales , Niño , Humanos , Ratones , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Ingestión de Alimentos , Conducta Alimentaria , Nucleobindinas
7.
Artículo en Inglés | MEDLINE | ID: mdl-36612350

RESUMEN

The circadian rhythm regulates biological processes that occur within 24 h in living organisms. It plays a fundamental role in maintaining biological functions and responds to several inputs, including food intake, light/dark cycle, sleep/wake cycle, and physical activity. The circadian timing system comprises a central clock located in the suprachiasmatic nucleus (SCN) and tissue-specific clocks in peripheral tissues. Several studies show that the desynchronization of central and peripheral clocks is associated with an increased incidence of insulin resistance (IR) and related diseases. In this review, we discuss the current knowledge of molecular and cellular mechanisms underlying the impact of circadian clock dysregulation on insulin action. We focus our attention on two possible mediators of this interaction: the phosphatases belonging to the pleckstrin homology leucine-rich repeat protein phosphatase family (PHLPP) family and the deacetylase Sirtuin1. We believe that literature data, herein summarized, suggest that a thorough change of life habits, with the return to synchronized food intake, physical activity, and rest, would doubtless halt the vicious cycle linking IR to dysregulated circadian rhythms. However, since such a comprehensive change may be incompatible with the demand of modern society, clarifying the pathways involved may, nonetheless, contribute to the identification of therapeutic targets that may be exploited to cure or prevent IR-related diseases.


Asunto(s)
Relojes Circadianos , Resistencia a la Insulina , Humanos , Relojes Circadianos/fisiología , Ritmo Circadiano/fisiología , Núcleo Supraquiasmático/metabolismo , Fotoperiodo
8.
Diabetes Res Clin Pract ; 185: 109789, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35192912

RESUMEN

AIMS: Subjects with elevated 1 h post-load glucose concentrations (1hPG) exhibit increased risk of non-alcoholic fatty liver disease (NAFLD) and duodenal sodium/glucose co-transporter 1 (SGLT-1) levels. Herein, we evaluate whether higher SGLT-1 duodenal levels are associated with NAFLD and increased risk of advance liver fibrosis. METHODS: SGLT-1 levels were assessed on duodenal mucosa in 52 individuals subdivided into two groups according to ultrasonography-defined presence of NAFLD. Intracellular triglycerides levels and activation of endoplasmic reticulum (ER) stress were evaluated in human hepatocytes exposed to high-glucose concentration (HG). RESULTS: Individuals with NAFLD exhibited higher duodenal SGLT-1 abundance along with raised 1hPG, as compared to those without NAFLD. The mediation analysis showed that augmented duodenal SGLT-1 levels were a predictor of NAFLD, and the link between increased duodenal SGLT-1 content and NAFLD risk was mediated by augmented 1hPG. Amongst participants with NAFLD, those with intermediate/high probability of advance liver fibrosis, estimated by NAFLD fibrosis score, exhibited higher duodenal SGLT-1 abundance and 1hPG levels as compared to the low probability group. Hepatocytes exposed to HG showed increased triglycerides accumulation and an up-regulation of ER stress pathway. CONCLUSIONS: Increased duodenal SGLT-1 abundance and the related early post-prandial hyperglycemia are associated with NAFLD and advance liver fibrosis.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Glucosa , Humanos , Cirrosis Hepática , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Sodio , Triglicéridos
9.
Nutrients ; 14(6)2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35334956

RESUMEN

The aim of the present study was to evaluate the possible correlation between oxidative stress and subclinical myocardial damage, assessed with speckle tracking echocardiography (STE), in normal glucose tolerance (NGT) patients with one-hour plasma glucose values ≥ 155 mg/dL (NGT ≥ 155), comparing them to NGT < 155 subjects, impaired glucose tolerance (IGT) and type 2 diabetes mellitus (T2DM) newly diagnosed patients. We enrolled 100 Caucasian patients. All subjects underwent OGTT. The serum values of oxidative stress markers (8-isoprostane and Nox-2) were assessed with an ELISA test. Echocardiographic recordings were performed using an E-95 Pro ultrasound system. We observed significant differences, among the four groups, for fasting plasma glucose (p < 0.0001), one-hour postload (p < 0.0001), and two-hour postload plasma glucose (p < 0.0001). As compared with NGT < 155, NGT ≥ 155 exhibited significantly worse insulin sensitivity and higher values of hs-CRP. No significant differences were observed between NGT ≥ 155 and IGT patients. There was a significant increase in 8-isoprostane (p < 0.0001) and Nox-2 (p < 0.0001), from the first to fourth group, indicating an increase in oxidative stress with the worsening of the metabolic status. Serum levels of 8-isoprostane and Nox-2 were significantly increased in NGT ≥ 155 compared to the NGT < 155 group, but similar to IGT. The global longitudinal strain (GLS) appeared progressively lower proceeding from the NGT < 155 to T2DM group (p < 0.0001). For similar values of left ventricular ejection fraction (LVEF), NGT ≥ 155 exhibited reduced GLS compared to NGT < 155 (p = 0.001), but similar to IGT patients. Our study demonstrated that NGT ≥ 155 subjects exhibit early functional impairment of myocardial contractile fibres, these alterations are correlated with increased oxidative stress.


Asunto(s)
Diabetes Mellitus Tipo 2 , Glucemia/metabolismo , Prueba de Tolerancia a la Glucosa , Humanos , Estrés Oxidativo , Fenotipo , Volumen Sistólico , Función Ventricular Izquierda
10.
Diabetes Res Clin Pract ; 181: 109094, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34662689

RESUMEN

AIMS: Individuals with HbA1c-defined prediabetes (HbA1c 5.7-6.4%) and 1-hour post-load plasma glucose (1hPG) ≥ 155 mg/dl have an increased risk to develop type 2 diabetes (T2DM). T2DM is associated with a higher intestinal expression of sodium/glucose co-transporter 1 (SGLT-1) and glucose transporter 2 (GLUT-2). It is currently unsettled whether HbA1c-defined dysglycemic conditions combined to 1hPG ≥ 155 mg/dl are associated with changes in SGLT-1 and GLUT-2 duodenal abundance. METHODS: SGLT-1 and GLUT-2 protein levels were assessed by western blot on duodenal mucosa biopsies of 57 individuals underwent an upper gastrointestinal endoscopy. RESULTS: Compared with the normal group (HbA1c < 5.7%), individuals with HbA1c-defined pre-diabetes and diabetes exhibit no significant change in duodenal SGLT-1 abundance. Conversely, duodenal GLUT-2 levels were progressively increased in subjects with prediabetes and diabetes. Stratifying participants according to HbA1c and 1hPG we found that amongst subjects with HbA1c-defined normal or prediabetes condition those having 1hPG ≥ 155 mg/dl displayed higher duodenal levels of SGLT-1 as compared to their counterparts with 1hPG < 155 mg/dl; in contrast to GLUT-2 levels, which were similar between normal and with prediabetes subjects, regardless of 1hPG value. CONCLUSION: A value of 1hPG ≥ 155 mg/dl may identify a subset of individuals within HbA1c-defined glycemic categories having a higher duodenal abundance of SGLT-1.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hiperglucemia , Estado Prediabético , Glucemia , Prueba de Tolerancia a la Glucosa , Hemoglobina Glucada/análisis , Humanos , Estado Prediabético/diagnóstico , Sodio
11.
Hypertens Res ; 44(11): 1451-1461, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34471254

RESUMEN

Low levels of endothelial progenitor cells (EPCs) are associated with cardiovascular (CV) morbidity and mortality. Early indicators of vascular damage represent independent predictors of CV prognosis. The aim of this study was to evaluate the possible association of EPCs and circulating cytokine levels with vascular damage markers in naive hypertensive patients according to sex and to evaluate the role of EPCs in vascular damage progression. We enrolled 60 subjects; circulating EPCs were determined by cytometric analysis, and serum cytokines were determined by chemiluminescence microarray technology. Endothelial function was estimated with the measurement of the reactive hyperemia index (RHI), arterial stiffness (AS) was evaluated with the measurement of carotid-femoral pulse wave velocity (PWV) and carotid intima-media thickness (IMT) was determined by a high-resolution ultrasound B-mode system. Patients were evaluated at baseline and after an average follow-up of 3.0 ± 0.6 years. RHI was correlated with EPCs and inversely related to HOMA, TNF-α, IL-6, hs-CRP, and IL-1ß. PWV was positively correlated with HOMA, TNF-α, IL-6, IL-1ß, and hs-CRP, and it was inversely related to EPCs. An inverse relationship was observed between c-IMT and EPCs and e-GFR. EPCs were the major predictor of the RHI and PWV. After adjustment for vascular index basal values and the other covariates, EPCs explained 17.0%, 27.7%, and 10.6% of the variability in ΔRHI, ΔPWV, and Δc-IMT at follow-up, respectively. Our study results support the hypothesis of an etiological link between circulating EPCs and morphofunctional vascular parameters in hypertensive subjects. Of interest, circulating EPCs, after adjusting for possible confounding factors, may indicate vascular damage progression.


Asunto(s)
Células Progenitoras Endoteliales , Hipertensión , Rigidez Vascular , Grosor Intima-Media Carotídeo , Humanos , Análisis de la Onda del Pulso
12.
Metabolism ; 114: 154416, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33137378

RESUMEN

CONTEXT: In this study, we aimed to identify the determinants of mitochondrial dysfunction in skeletal muscle (SKLM) of subjects with type 2 diabetes (T2DM), and to evaluate the effect of pioglitazone (PIO) on SKLM mitochondrial proteome. METHODS: Two different groups of adults were studied. Group I consisted of 8 individuals with normal glucose tolerance (NGT) and 8 with T2DM, subjected to SKLM mitochondrial proteome analysis by 2D-gel electrophoresis followed by mass spectrometry-based protein identification. Group II included 24 individuals with NGT and 24 with T2DM, whose SKLM biopsies were subjected to immunoblot analysis. Of the 24 subjects with T2DM, 20 were randomized to receive placebo or PIO (15 mg daily) for 6 months. After 6 months of treatment, SKLM biopsy was repeated. RESULTS: Mitochondrial proteomic analysis on Group I revealed that several mitochondrial proteins involved in oxidative metabolism were differentially expressed between T2DM and NGT groups, with a downregulation of ATP synthase alpha chain (ATP5A), electron transfer flavoprotein alpha-subunit (ETFA), cytochrome c oxidase subunit VIb isoform 1 (CX6B1), pyruvate dehydrogenase protein X component (ODPX), dihydrolipoamide dehydrogenase (DLDH), dihydrolipoamide-S-succinyltransferase (DLST), and mitofilin, and an up-regulation of hydroxyacyl-CoA-dehydrogenase (HCDH), 3,2-trans-enoyl-CoA-isomerase (D3D2) and delta3,5-delta2,4-dienoyl-CoA-isomerase (ECH1) in T2DM as compared to NGT subjects. By immunoblot analysis on SKLM lysates obtained from Group II we confirmed that, in comparison to NGT subjects, those with T2DM exhibited lower protein levels of ATP5A (-30%, P = 0.006), ETFA (-50%, P = 0.02), CX6B1 (-30%, P = 0.03), key factors for ATP biosynthesis, and of the structural protein mitofilin (-30%, P = 0.01). T2DM was associated with a reduced abundance of the enzymes involved in the Krebs cycle DLST and ODPX (-20%, P ≤ 0.05) and increased levels of HCDH and ECH1, enzymes implicated in the fatty acid catabolism (+30%, P ≤ 0.05). In subjects with type 2 diabetes treated with PIO for 6 months we found a restored SKLM protein abundance of ATP5A, ETFA, CX6B1, and mitofilin. Moreover, protein levels of HCDH and ECH1 were reduced by -10% and - 15% respectively (P ≤ 0.05 for both) after PIO treatment. CONCLUSION: Type 2 diabetes is associated with reduced levels of mitochondrial proteins involved in oxidative phosphorylation and an increased abundance of enzymes implicated in fatty acid catabolism in SKLM. PIO treatment is able to improve SKLM mitochondrial proteomic profile in subjects with T2DM.


Asunto(s)
Adenosina Trifosfato/biosíntesis , Diabetes Mellitus Tipo 2/metabolismo , Mitocondrias Musculares/efectos de los fármacos , Proteínas Mitocondriales/metabolismo , Músculo Esquelético/efectos de los fármacos , Pioglitazona/farmacología , Adulto , Femenino , Glucosa/metabolismo , Humanos , Masculino , Espectrometría de Masas , Persona de Mediana Edad , Mitocondrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Fosforilación Oxidativa , Proteómica
13.
Mol Cell Biol ; 27(6): 2372-83, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17242212

RESUMEN

Interleukin 6 (IL-6) is an independent predictor of type 2 diabetes and cardiovascular disease and is correlated with insulin resistance. Insulin stimulates nitric oxide (NO) production through the IRS-1/PI3-kinase/Akt/eNOS pathway (where IRS-1 is insulin receptor substrate 1, PI3-kinase is phosphatidylinositol 3-kinase, and eNOS is endothelial NO synthase). We asked if IL-6 affects insulin vasodilator action both in human umbilical vein endothelial cells (HUVEC) and in the aortas of C57BL/6J mice and whether this inhibitory effect was caused by increased Ser phosphorylation of IRS-1. We observed that IL-6 increased IRS-1 phosphorylation at Ser(312) and Ser(616); these effects were paralleled by increased Jun N-terminal protein kinase (JNK) and extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation and reversed by JNK and ERK1/2 inhibition. In addition, IL-6 treatment resulted in impaired IRS-1 phosphorylation at Tyr(612), a site essential for engaging PI3-kinase. Furthermore, IL-6 treatment reduced insulin-stimulated phosphorylation of eNOS at the stimulatory Ser(1177) site and impaired insulin-stimulated eNOS dephosphorylation at the inhibitory Thr(495) site. Insulin-stimulated eNOS activation and NO production were also inhibited by IL-6; these effects were reversed by inhibition of JNK and ERK1/2. Treatment of C57BL/6J mice with IL-6 resulted in impaired insulin-dependent activation of the Akt/eNOS pathway in the aorta as a result of JNK and ERK1/2 activation. Our data suggest that IL-6 impairs the vasodilator effects of insulin that are mediated by the IRS-1/PI3-kinase/Akt/eNOS pathway through activation of JNK and ERK1/2.


Asunto(s)
Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Insulina/metabolismo , Interleucina-6/farmacología , Óxido Nítrico/biosíntesis , Transducción de Señal/efectos de los fármacos , Venas Umbilicales/citología , Animales , Células Cultivadas , Activación Enzimática , Humanos , Proteínas Sustrato del Receptor de Insulina , Ratones , Ratones Endogámicos C57BL , Óxido Nítrico Sintasa de Tipo III/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Fosfoproteínas/metabolismo , Fosfoserina/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor de Insulina/metabolismo
14.
Int J Endocrinol ; 2020: 1027386, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32411219

RESUMEN

Currently available antidiabetic treatments fail to halt, and may even exacerbate, pancreatic ß-cell exhaustion, a key feature of type 2 diabetes pathogenesis; thus, strategies to prevent, or reverse, ß-cell failure should be actively sought. The serine threonine kinase Akt has a key role in the regulation of ß-cell homeostasis; among Akt modulators, a central role is played by pleckstrin homology domain leucine-rich repeat protein phosphatase (PHLPP) family. Here, taking advantage of an in vitro model of chronic exposure to high glucose, we demonstrated that PHLPPs, particularly the second family member called PHLPP2, are implicated in the ability of pancreatic ß cells to deal with glucose toxicity. We observed that INS-1 rat pancreatic ß cell line maintained for 12-15 passages at high (30 mM) glucose concentrations (INS-1 HG) showed increased expression of PHLPP2 and PHLPP1 both at mRNA and protein level as compared to INS-1 maintained for the same number of passages in the presence of normal glucose levels (INS-1 NG). These changes were paralleled by decreased phosphorylation of Akt and by increased expression of apoptotic and autophagic markers. To investigate if PHLPPs had a casual role in the alteration of INS-1 homeostasis observed upon chronic exposure to high glucose concentrations, we took advantage of shRNA technology to specifically knock-down PHLPPs. We obtained proof-of-concept evidence that modulating PHLPPs expression may help to restore a healthy ß cell mass, as the reduced expression of PHLPP2/1 was accompanied by a recovered balance between pro- and antiapoptotic factor levels. In conclusion, our data provide initial support for future studies aimed to identify pharmacological PHLPPs modulator to treat beta-cell survival impairment. They also contribute to shed some light on ß-cell dysfunction, a complex and unsatisfactorily characterized phenomenon that has a central causative role in the pathogenesis of type 2 diabetes.

15.
Mol Metab ; 31: 1-13, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31918912

RESUMEN

OBJECTIVE: An increase in mass and/or brown adipose tissue (BAT) functionality leads to an increase in energy expenditure, which may be beneficial for the prevention and treatment of obesity. Moreover, distinct class I PI3K isoforms can participate in metabolic control as well as in systemic dysfunctions associated with obesity. In this regard, we analyzed in vivo whether the lack of p85α in BAT (BATp85αKO) could modulate the activity and insulin signaling of this tissue, thereby improving diet-induced obesity and its associated metabolic complications. METHODS: We generated BATp85αKO mice using Cre-LoxP technology, specifically deleting p85α in a conditional manner. To characterize this new mouse model, we used mice of 6 and 12 months of age. In addition, BATp85αKO mice were submitted to a high-fat diet (HFD) to challenge BAT functionality. RESULTS: Our results suggest that the loss of p85α in BAT improves its thermogenic functionality, high-fat diet-induced adiposity and body weight, insulin resistance, and liver steatosis. The potential mechanisms involved in the improvement of obesity include (1) increased insulin signaling and lower activation of JNK in BAT, (2) enhanced insulin receptor isoform B (IRB) expression and association with IRS-1 in BAT, (3) lower production of proinflammatory cytokines by the adipose organ, (4) increased iWAT browning, and (5) improved liver steatosis. CONCLUSIONS: Our results provide new mechanisms involved in the resistance to obesity development, supporting the hypothesis that the gain of BAT activity induced by the lack of p85α has a direct impact on the prevention of diet-induced obesity and its associated metabolic complications.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Fosfatidilinositol 3-Quinasa Clase Ia/metabolismo , Obesidad/metabolismo , Animales , Fosfatidilinositol 3-Quinasa Clase Ia/deficiencia , Dieta Alta en Grasa/efectos adversos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/inducido químicamente
16.
Nutrients ; 12(9)2020 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-32825165

RESUMEN

Increased levels of uric acid (UA) have been shown to be correlated with many clinical conditions. Uric acid may adversely affect the insulin signalling pathway inducing insulin resistance (IR). Several studies report the association between arterial stiffness (AS), an early indicator of atherosclerosis, and UA. The purpose of the present study was to evaluate the association between UA and AS, considering the potential role of IR. We enrolled 1114 newly diagnosed, never-treated hypertensive patients. Insulin resistance was assessed by the homeostatic model assessment (HOMA) index. Arterial stiffness was evaluated as the measurement of the carotid-femoral pulse wave velocity (PWV). The study cohort was divided into subgroups, according to increasing tertiles of UA. The mean values of UA were 5.2 ± 1.6 mg/dL in the overall population. Pulse wave velocity was linearly correlated with UA (p < 0.0001), HOMA (p < 0.0001), high sensitivity C-reactive protein (p < 0.0001), systolic blood pressure (p < 0.0001) and LDL cholesterol (p = 0.005). Uric acid was the strongest predictor of PWV and was associated with the highest risk for increased AS. The interaction analysis showed that the joint effect of increased UA and HOMA was significantly higher than that expected in the absence of interaction under the additive model, indicating that the two biomarkers synergically interacted for promoting vascular damage. Our data showed that UA interacted with IR to increase AS in a large cohort of newly diagnosed, never-treated hypertensive patients.


Asunto(s)
Aterosclerosis/diagnóstico , Aterosclerosis/patología , Hipertensión Esencial/diagnóstico , Hipertensión Esencial/patología , Resistencia a la Insulina/fisiología , Ácido Úrico/sangre , Rigidez Vascular , Adulto , Biomarcadores/análisis , Biomarcadores/sangre , Proteína C-Reactiva/análisis , Femenino , Humanos , Masculino , Persona de Mediana Edad , Análisis de la Onda del Pulso , Riesgo
17.
Nutrients ; 12(2)2020 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-32023991

RESUMEN

: Type 2 diabetes mellitus (T2DM) is a risk factor for cognitive impairment. Ranolazine, an anti-ischemic drug used in the treatment of angina pectoris, has been shown to possess hypoglycemic properties in pre-clinical and clinical studies. The aim of this study was to evaluate the effects of ranolazine on glucose metabolism and cognitive function in a T2DM model of Wistar rats. Diabetes was induced by a high fat diet (HFD) and streptozotocin (STZ). The control group received a normal caloric diet (NCD) and sodium citrate buffer. Metformin, an effective hypoglycemic drug, was employed as a positive control. Animals were divided into the following groups: HFD/STZ + Ranolazine, HFD/STZ + Metformin, HFD/STZ + Vehicle, NCD + Vehicle, NCD + Ranolazine, and NCD + Metformin. Rats received ranolazine (20 mg/kg), metformin (300 mg/kg), or water, for 8 weeks. At the end of the treatments, all animals underwent to an intraperitoneal glucose tolerance test (IPGTT) and behavioral tests, including passive avoidance, novel object recognition, forced swimming, and elevate plus maze tests. Interleukin-6 plasma levels in the six treatment groups were assessed by Elisa assay. Body mass composition was estimated by nuclear magnetic resonance (NMR). Glucose responsiveness significantly improved in the HFD/STZ + Ranolazine (p < 0.0001) and HFD/STZ + Metformin (p = 0.003) groups. There was a moderate effect on blood glucose levels in the NCD + Ranolazine and NCD + Metformin groups. Lean body mass was significantly increased in the HFD/STZ + Ranolazine and HFD/STZ + Metformin animals, compared to HFD/STZ + Vehicle animals. Ranolazine improved learning and long-term memory in HFD/STZ + Ranolazine compared to HFD/STZ + Vehicle (p < 0.001) and ameliorated the pro-inflammatory profile of diabetic mice. These results support the hypothesis of a protective effect of ranolazine against cognitive decline caused by T2DM.


Asunto(s)
Cognición/efectos de los fármacos , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Hipoglucemiantes/farmacología , Ranolazina/farmacología , Animales , Conducta Animal/efectos de los fármacos , Glucemia/efectos de los fármacos , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/psicología , Diabetes Mellitus Tipo 2/inducido químicamente , Diabetes Mellitus Tipo 2/psicología , Dieta Alta en Grasa , Prueba de Tolerancia a la Glucosa , Aprendizaje por Laberinto/efectos de los fármacos , Metformina/farmacología , Ratas , Ratas Wistar , Estreptozocina
18.
J Clin Invest ; 116(3): 775-82, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16485043

RESUMEN

Diabetes is associated with defective beta cell function and altered beta cell mass. The mechanisms regulating beta cell mass and its adaptation to insulin resistance are unknown. It is unclear whether compensatory beta cell hyperplasia is achieved via proliferation of existing beta cells or neogenesis from progenitor cells embedded in duct epithelia. We have used transgenic mice expressing a mutant form of the forkhead-O1 transcription factor (FoxO1) in both pancreatic ductal and endocrine beta cells to assess the contribution of these 2 compartments to islet expansion. We show that the mutant FoxO1 transgene prevents beta cell replication in 2 models of beta cell hyperplasia, 1 due to peripheral insulin resistance (Insulin receptor transgenic knockouts) and 1 due to ectopic local expression of IGF2 (Elastase-IGF2 transgenics), without affecting insulin secretion. In contrast, we failed to detect a specific effect of the FoxO1 transgene on the number of periductal beta cells. We propose that beta cell compensation to insulin resistance is a proliferative response of existing beta cells to growth factor signaling and requires FoxO1 nuclear exclusion.


Asunto(s)
Factores de Transcripción Forkhead/fisiología , Resistencia a la Insulina/fisiología , Células Secretoras de Insulina/metabolismo , Animales , Diabetes Mellitus/genética , Modelos Animales de Enfermedad , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead/genética , Factor II del Crecimiento Similar a la Insulina/genética , Factor II del Crecimiento Similar a la Insulina/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Receptor de Insulina/deficiencia , Receptor de Insulina/genética
19.
Diabetes Metab Res Rev ; 25(4): 351-6, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19319930

RESUMEN

BACKGROUND: It has been shown that subjects with normal glucose tolerance (NGT), whose plasma glucose (PG) levels do not return to their fasting PG level within 2 h during an oral glucose tolerance test (OGTT) (Group I), have a significantly higher risk to develop type 2 diabetes than NGT subjects whose 2-h glucose returns to, or drops below, the fasting level (Group I). However, it is still unsettled whether individuals in Group II have a more atherogenic profile than Group I subjects. METHODS: To address this issue, we examined 266 non-diabetic offspring of type 2 diabetic patients, recruited in the context of EUGENE2 cross-sectional study. All subjects underwent an euglycaemic-hyperinsulinemic clamp to assess glucose tolerance and insulin sensitivity. Furthermore, cardiovascular risk factors and ultrasound measurement of carotid intima-media thickness (IMT) were evaluated. RESULTS: Individuals in Group II exhibited significantly higher waist circumference, blood pressure, triglycerides, 2-h post-load PG, hsC-reactive protein, interleukin-6, insulin-like growth factor-1 (IGF-1), IMT, and lower insulin sensitivity than subjects in Group I. CONCLUSIONS: Subjects with NGT, whose PG concentration does not return to their fasting PG level within 2 h during OGTT, have an atherogenic profile, suggesting that performing OGTT with measurement of PG every 30 min may be useful to assess the risk for cardiovascular disease in glucose-tolerant subjects.


Asunto(s)
Aterosclerosis/sangre , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/fisiopatología , Ayuno/sangre , Prueba de Tolerancia a la Glucosa , Adulto , Aterosclerosis/complicaciones , Aterosclerosis/fisiopatología , Biomarcadores/sangre , Composición Corporal , Arterias Carótidas/fisiopatología , Estudios Transversales , Diabetes Mellitus Tipo 2/complicaciones , Femenino , Humanos , Masculino , Persona de Mediana Edad , Linaje , Valores de Referencia , Medición de Riesgo
20.
Arterioscler Thromb Vasc Biol ; 28(7): 1355-60, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18436806

RESUMEN

BACKGROUND: In the endothelium, insulin promotes nitric oxide (NO) production, through the insulin receptor/IRS-1/PI3-Kinase/Akt/eNOS signaling pathway. An inhibitor of insulin action, TRIB3, has recently been identified which affects insulin action by binding to and inhibiting Akt phosphorylation. We have recently described a Q84R gain-of-function polymorphism of TRIB3 with the R84 variant being associated with insulin resistance and an earlier age at myocardial infarction. METHODS AND RESULTS: To investigate the TRIB3 R84 variant impact on endothelial insulin action, we cultured human umbilical vein endothelial cells (HUVECs) naturally carrying different TRIB3 genotypes (QQ-, QR-, or RR-HUVECs). TRIB3 inhibitory activity on insulin-stimulated Akt phosphorylation and the amount of protein which was coimmunoprecipitable with Akt were significantly greater in QR- and RR- as compared to QQ- HUVECs. After insulin stimulation, Akt and eNOS activation as well as NO production were markedly decreased in QR- and RR- as compared to QQ-HUVECs. TRIB3 molecular modeling analysis provided insights into the structural changes related to the polymorphisms potentially determining differences in protein-protein interaction with Akt. CONCLUSIONS: Our data demonstrate that the TRIB3 R84 variant impairs insulin signaling and NO production in human endothelial cells. This finding provides a plausible biological background for the deleterious role of TRIB3 R84 on genetic susceptibility to coronary artery disease.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Células Endoteliales/metabolismo , Resistencia a la Insulina , Insulina/metabolismo , Óxido Nítrico/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Represoras/metabolismo , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Sitios de Unión , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/fisiopatología , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Células Cultivadas , GMP Cíclico/metabolismo , Células Endoteliales/enzimología , Activación Enzimática , Genotipo , Glucógeno Sintasa Quinasa 3/metabolismo , Humanos , Proteínas Sustrato del Receptor de Insulina , Resistencia a la Insulina/genética , Modelos Moleculares , Mutación , Óxido Nítrico Sintasa de Tipo III/metabolismo , Proteína Oncogénica v-akt/metabolismo , Fenotipo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Unión Proteica , Conformación Proteica , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Receptor de Insulina/metabolismo , Proteínas Represoras/química , Proteínas Represoras/genética , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA