Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Am J Sports Med ; 51(14): 3714-3723, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37897349

RESUMEN

BACKGROUND: Adolescents who experience a patellar dislocation have an elevated risk of patellofemoral posttraumatic osteoarthritis. Magnetic resonance imaging (MRI)-based T1ρ relaxation times were measured for adolescents to evaluate patellofemoral cartilage after patellar dislocation. Long T1ρ relaxation times are an indicator of cartilage degradation. HYPOTHESIS: The primary hypothesis is that patellofemoral cartilage T1ρ relaxation times will be elevated in the acute phase after patellar dislocation. The secondary hypothesis is that T1ρ relaxation times will be higher for knees with multiple rather than single dislocations due to repeated traumatic injury. STUDY DESIGN: Cross-sectional study; Level of evidence, 3. METHODS: In total, 23 adolescents being treated for a recent patellar dislocation, 13 for a first-time dislocation (47 ± 38 days since most recent dislocation) and 10 for multiple dislocations (55 ± 24 days since most recent dislocation), and 10 healthy controls participated in MRI-based T1ρ relaxation time mapping. For multiple regions of the patellofemoral joint, mean T1ρ values were compared between the 3 groups with multiple group comparisons and post hoc tests. T1ρ relaxation times were also correlated against measures of patellofemoral anatomy and alignment for single and multiple dislocations. Statistical significance was set at P < .05. RESULTS: T1ρ relaxation times were significantly longer for injured knees (single and multiple dislocations) than controls at the medial and central patella and central trochlear groove. For the regions on the patella, significant differences between injured and control knees exceeded 15%. No significant differences were identified between single and multiple dislocations. For the initial dislocation group, T1ρ relaxation times within multiple regions of the patellofemoral joint were significantly correlated with lateral patellar alignment or patellar height. CONCLUSION: Elevated patellofemoral cartilage T1ρ relaxation times are consistent with a high risk of long-term patellofemoral osteoarthritis for adolescents who experience patellar dislocations. T1ρ relaxation times were elevated for multiple regions of patellofemoral cartilage. T1ρ relaxation times were expected to increase with additional dislocation episodes, but relaxation times after single and multiple dislocations were similar. After a first dislocation, parameters related to patellar maltracking were correlated with cartilage degradation.


Asunto(s)
Enfermedades Óseas , Luxaciones Articulares , Osteoartritis de la Rodilla , Luxación de la Rótula , Articulación Patelofemoral , Humanos , Adolescente , Luxación de la Rótula/diagnóstico por imagen , Estudios Transversales , Cartílago , Articulación Patelofemoral/diagnóstico por imagen , Rótula , Imagen por Resonancia Magnética/métodos
2.
Int J Exerc Sci ; 13(1): 234-248, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32148612

RESUMEN

External load may increase an individual's risk of non-contact anterior cruciate ligament (ACL) injury during single-legged jump-landing (SLJL). This study evaluated the effects of jump direction and external load on hip and knee joint motion and time to stabilization (TTS) during SLJL. Seventeen active males (n = 8) and females (22.2 ± 3.0 y, 1.75 ± 0.08 m, 73.4 ± 12.0 kg) participated in this randomized, crossover designed study. Single-legged jump-landings performed in two conditions, including without external load (BW) and with a torso-worn weight vest equal to 10% of the participant's body weight (BW+10%), from backward, forward, medial, and lateral SLJL directions. Two-way repeated measures ANOVA did not identify any significant interactions (P > .01, η2: < .001 - .037), but some main effects for condition with small effect sizes were identified (P < .01, η2: .009 - .039). Several main effects for SLJL direction were identified with larger effect sizes (P < .01, η2: .010 - .574). This suggests SLJL direction may challenge different components of SLJL biomechanics, and that recreationally active, college-aged individuals may possess effective compensatory mechanisms that can mitigate the effect of BW+10%.

3.
Case Rep Orthop ; 2018: 9261260, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30002938

RESUMEN

Soft tissue injuries are prevalent after traumatic anterior shoulder dislocation. However, bony fractures, often referred to as bony Bankart injuries, are less common. The authors describe the case of a 16-year-old male who displayed a bony Bankart with a unique, everted presentation. The patient presented with left shoulder pain, restricted range of motion, and crepitus. Two weeks prior to physical examination, he sustained a traumatic anterior glenohumeral dislocation after a bicycle accident, which reduced spontaneously. Plain film imaging revealed a bony fragment off the anterior glenoid. Upon critical examination of magnetic resonance imaging axial cuts, the bony fragment was found to be flipped. Intraoperatively, this orientation was confirmed. The fragment was reduced and stabilized in an anatomic position using a double row technique with the capsule then advanced over the top of the fragment using three additional anchors. Imaging four months postoperatively revealed an anatomical reduction of the fragment. To the authors' knowledge, this is the first reported case of bony fragment eversion following traumatic anterior shoulder dislocation. Although the incidence of everted bony fragments following traumatic dislocation is unknown, such a situation presents unique challenges to the orthopedic surgeon. The authors discuss potential eversion mechanisms, fragment identification by imaging, surgical indications, and operative techniques.

4.
Stem Cells Int ; 2017: 2480375, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28638414

RESUMEN

Rhabdomyosarcoma (RMS) is an aggressive family of soft tissue tumors that most commonly manifests in children. RMS variants express several skeletal muscle markers, suggesting myogenic stem or progenitor cell origin of RMS. In this review, the roles of both recently identified and well-established microRNAs in RMS are discussed and summarized in a succinct, tabulated format. Additionally, the subtypes of RMS are reviewed along with the involvement of basic helix-loop-helix (bHLH) proteins, Pax proteins, and microRNAs in normal and pathologic myogenesis. Finally, the current and potential future treatment options for RMS are outlined.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA