Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Breast Cancer Res ; 20(1): 43, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29859099

RESUMEN

BACKGROUND: Proteolytic impairment of the Fc effector functions of therapeutic monoclonal antibodies (mAbs) can compromise their antitumor efficacy in the tumor microenvironment and may represent an unappreciated mechanism of host immune evasion. Pertuzumab is a human epidermal growth factor receptor 2 (HER2)-targeting antibody and has been widely used in the clinic in combination with trastuzumab for treatment of HER2-overexpressing breast cancer. Pertuzumab susceptibility to proteolytic hinge cleavage and its impact on the drug's efficacy has not been previously studied. METHODS: Pertuzumab was incubated with high and low HER2-expressing cancer cells and proteolytic cleavage in the lower hinge region was detected by western blotting. The single hinge cleaved pertuzumab (scIgG-P) was purified and evaluated for its ability to mediate antibody-dependent cellular cytotoxicity (ADCC) in vitro and anti-tumor efficacy in vivo. To assess the cleavage of trastuzumab (IgG-T) and pertuzumab (IgG-P) when simultaneously bound to the same cancer cell surface, F(ab')2 fragments of IgG-T or IgG-P were combined with the intact IgG-P and IgG-T, respectively, to detect scIgG generation by western blotting. RESULTS: Pertuzumab hinge cleavage occurred when the mAb was incubated with high HER2-expressing cancer cells. The hinge cleavage of pertuzumab caused a substantial loss of ADCC in vitro and reduced antitumor efficacy in vivo. The reduced ADCC function of scIgG-P was restored by an anti-hinge mAb specific for a cleavage site neoepitope. In addition, we constructed a protease-resistant version of the anti-hinge mAb that restored ADCC and the cell-killing functions of pertuzumab when cancer cells exressed a potent IgG hinge-cleaving protease. We also observed increased hinge cleavage of pertuzumab when combined with trastuzumab. CONCLUSION: The reduced Fc effector function of single hinge-cleaved pertuzumab can be restored by an anti-hinge mAb. The restoration effect indicated that immune function could be readily augmented when the damaged primary antibodies were bound to cancer cell surfaces. The anti-hinge mAb also restored Fc effector function to the mixture of proteolytically disabled trastuzumab and pertuzumab, suggesting a general therapeutic strategy to restore the immune effector function to protease-inactivated anticancer antibodies in the tumor microenvironment. The findings point to a novel tactic for developing breast cancer immunotherapy.


Asunto(s)
Anticuerpos Monoclonales/administración & dosificación , Neoplasias de la Mama/tratamiento farmacológico , Escape del Tumor/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacos , Animales , Anticuerpos Monoclonales/efectos adversos , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales Humanizados/administración & dosificación , Neoplasias de la Mama/genética , Neoplasias de la Mama/inmunología , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Fragmentos Fc de Inmunoglobulinas/efectos adversos , Fragmentos Fc de Inmunoglobulinas/inmunología , Inmunoglobulina G/inmunología , Ratones , Proteolisis/efectos de los fármacos , Receptor ErbB-2/inmunología , Escape del Tumor/inmunología , Microambiente Tumoral/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto
2.
PLoS Biol ; 13(7): e1002207, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26222308

RESUMEN

The steroid hormone ecdysone and its receptor (EcR) play critical roles in orchestrating developmental transitions in arthropods. However, the mechanism by which EcR integrates nutritional and developmental cues to correctly activate transcription remains poorly understood. Here, we show that EcR-dependent transcription, and thus, developmental timing in Drosophila, is regulated by CDK8 and its regulatory partner Cyclin C (CycC), and the level of CDK8 is affected by nutrient availability. We observed that cdk8 and cycC mutants resemble EcR mutants and EcR-target genes are systematically down-regulated in both mutants. Indeed, the ability of the EcR-Ultraspiracle (USP) heterodimer to bind to polytene chromosomes and the promoters of EcR target genes is also diminished. Mass spectrometry analysis of proteins that co-immunoprecipitate with EcR and USP identified multiple Mediator subunits, including CDK8 and CycC. Consistently, CDK8-CycC interacts with EcR-USP in vivo; in particular, CDK8 and Med14 can directly interact with the AF1 domain of EcR. These results suggest that CDK8-CycC may serve as transcriptional cofactors for EcR-dependent transcription. During the larval-pupal transition, the levels of CDK8 protein positively correlate with EcR and USP levels, but inversely correlate with the activity of sterol regulatory element binding protein (SREBP), the master regulator of intracellular lipid homeostasis. Likewise, starvation of early third instar larvae precociously increases the levels of CDK8, EcR and USP, yet down-regulates SREBP activity. Conversely, refeeding the starved larvae strongly reduces CDK8 levels but increases SREBP activity. Importantly, these changes correlate with the timing for the larval-pupal transition. Taken together, these results suggest that CDK8-CycC links nutrient intake to developmental transitions (EcR activity) and fat metabolism (SREBP activity) during the larval-pupal transition.


Asunto(s)
Ciclina C/metabolismo , Quinasa 8 Dependiente de Ciclina/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/crecimiento & desarrollo , Drosophila/metabolismo , Receptores de Esteroides/metabolismo , Animales , Animales Modificados Genéticamente , Ciclina C/genética , Quinasa 8 Dependiente de Ciclina/genética , Proteínas de Unión al ADN/metabolismo , Drosophila/genética , Proteínas de Drosophila/genética , Ecdisteroides/biosíntesis , Femenino , Privación de Alimentos , Regulación de la Expresión Génica , Larva/crecimiento & desarrollo , Larva/metabolismo , Mutación , Proteínas de Unión a los Elementos Reguladores de Esteroles/metabolismo , Factores de Transcripción/metabolismo
3.
Biomacromolecules ; 17(11): 3790-3799, 2016 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-27653640

RESUMEN

Tumorigenic cell behaviors can be suppressed or enhanced by their physicochemical environment. As a first step toward developing materials that allow tumorigenic behaviors to be observed and manipulated, we cultured related MCF10 breast cell lines on fibers composed of the Drosophila protein Ultrabithorax (Ubx). These cell lines, originally derived from fibrocystic breast tissue, represent a continuum of tumorigenic behavior. Immortal but nontumorigenic MCF10A cells, as well as semitumorigenic MCF10AT cells, attached and spread on Ubx fibers. MCF10CA-1a cells, the most highly transformed line, secreted high concentrations of matrix metalloproteinases when cultured on Ubx materials, resulting in differences in cell attachment and cytoskeletal structure, and enabling invasive behavior. Because the mechanical and functional properties of Ubx fibers can be genetically manipulated, these materials provide a valuable tool for cancer research, allowing creation of diverse microenvironments that allow assessment of invasive, metastatic behavior.


Asunto(s)
Neoplasias de la Mama/patología , Técnicas de Cultivo de Célula , Línea Celular Tumoral/efectos de los fármacos , Proteínas de Drosophila/química , Proteínas de Homeodominio/química , Factores de Transcripción/química , Animales , Drosophila melanogaster/química , Femenino , Humanos , Metástasis de la Neoplasia/patología
4.
Arch Pathol Lab Med ; 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38797516

RESUMEN

CONTEXT.­: Leptomeningeal disease (LMD) is a clinical sequela of central nervous system metastasis involving the cerebrospinal fluid (CSF), often seen in late-stage solid tumors. It has a grave prognosis without urgent treatment. Standard of care methodologies to diagnose LMD include CSF cytology, magnetic resonance imaging, and clinical evaluation. These methods offer limited sensitivity and specificity for the evaluation of LMD. Here, we describe the analytic performance characteristics of a microfluidic-based tumor cell enrichment and detection assay optimized to detect epithelial cells in CSF using both contrived samples as well as CSF from patients having suspected or confirmed LMD from carcinomas. OBJECTIVE.­: To demonstrate the feasibility of using a microfluidic, multi-antibody cell capture assay to identify and quantify tumor cells in CSF. DESIGN.­: An artificial CSF solution was spiked with 34 different human carcinoma cell lines at different concentrations and assayed for the ability to detect tumor cells to assess analytic accuracy. Two cell lines were selected to assess linearity, intra-assay precision, interinstrument precision, and sample stability. Clinical verification was performed on 65 CSF specimens from patients. Parameters assessed included the number of tumor cells, coefficient of variation percentage, and percentage of tumor cell capture (TCC). RESULTS.­: Among contrived samples, average tumor cell capture ranged from 50% to 82% (261 of 522; 436 of 531), and coefficients of variation ranged from 7% to 67%. The cell capture assay demonstrated a sensitivity of 92% and a specificity of 95% among clinical samples. CONCLUSIONS.­: This assay demonstrated the ability to detect and enumerate epithelial cells in contrived and clinical specimens in an accurate and reproducible fashion. The use of cell capture assays in CSF may be useful as a sensitive test for the diagnosis and longitudinal monitoring of LMD from solid tumors.

5.
Adv Exp Med Biol ; 725: 86-105, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22399320

RESUMEN

Surprisingly few transcription factors drive animal development relative to the number and diversity of final tissues and body structures. Therefore, most transcription factors must function in more than one tissue. In a famous example, members of the Hox transcription factor family are expressed in contiguous stripes along the anterior/posterior axis during animal development. Individual Hox transcription factors specify all tissues within their expression domain and thus must respond to cellular cues to instigate the correct tissue-specific gene regulatory cascade. We describe how, in the Drosophila Hox protein Ultrabithorax, intrinsically disordered regions implement, regulate and co-ordinate multiple functions, potentially enabling context-specific gene regulation. The large N-terminal disordered domain encodes most of the transcription activation domain and directly impacts DNA binding affinity by the Ubx homeodomain. Similarly, the C-terminal disordered domain alters DNA binding affinity and specificity, interaction with a Hox binding protein and strongly influences both transcription activation and repression. Phosphorylation of the N-terminal disordered domain and alternative splicing of the C-terminal disordered domain could allow the cell to both regulate and co-ordinate DNA binding, protein interactions and transcription regulation. For regulatory mechanisms relying on disorder to continue to be available when Ubx is bound to other proteins or DNA, fuzziness would need to be preserved in these macromolecular complexes. The intrinsically disordered domains in Hox proteins are predicted to be on the very dynamic end of the disorder spectrum, potentially allowing disorder to persist when Ubx is bound to proteins or DNA to regulate the function of these "fuzzy" complexes. Because both intrinsically disordered regions within Ubx have multiple roles, each region may implement several different regulatory mechanisms identified in fuzzy complexes. These intrinsic disorder-based regulatory mechanisms are likely to be critical for allowing Ubx to sense tissue identity and respond by implementing a context-specific gene regulatory cascade.


Asunto(s)
Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Homeodominio/química , Proteínas de Homeodominio/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Animales
6.
Commun Biol ; 5(1): 960, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-36104515

RESUMEN

Natural killer (NK) cells mediate antibody dependent cytotoxic killing of cancer cells via cross-linking FcγR on NK cells with IgG-Fc. Studies have shown that the single-hinge cleaved IgGs (scIgGs) have dysfunctional Fc and failed engagement with FcγRs on immune cells. However, little is known about how scIgGs impact on antitumor immunity in the tumor microenvironment. In this study, we revealed a significant association of tumor scIgGs with tumor progression and poor outcomes of breast cancer patients (n = 547). Using multiple mouse tumor models, we demonstrated that tumor scIgGs reduced NK cell cytotoxic activities and resulted in aggressive tumor progression. We further showed that an anti-hinge specific monoclonal antibody (AHA) rescued the dysfunctional Fc in scIgGs by providing a functional Fc and restored NK cell cytotoxic activity. These findings point to a novel immunotherapeutic strategy to enhance Fc engagement with FcγRs for activation of anticancer immunity.


Asunto(s)
Antineoplásicos , Neoplasias , Animales , Inmunoglobulina G , Células Asesinas Naturales , Ratones , Procesos Neoplásicos , Microambiente Tumoral
7.
Biol Proced Online ; 13: 6, 2011 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-21843345

RESUMEN

Although yeast two-hybrid experiments are commonly used to identify protein interactions, the frequent occurrence of false negatives and false positives hampers data interpretation. Using both yeast one-hybrid and two-hybrid experiments, we have identified potential sources of these problems: the media preparation protocol and the source of the yeast nitrogen base may not only impact signal range but also effect whether a result appears positive or negative. While altering media preparation may optimize signal differences for individual experiments, media preparation must be reported in detail to replicate studies and accurately compare results from different experiments.

8.
J Biomed Mater Res A ; 103(4): 1546-53, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25087647

RESUMEN

Although the in vivo function of the Drosophila melanogaster Hox protein Ultrabithorax (Ubx) is to regulate transcription, in vitro Ubx hierarchically self-assembles to form nanoscale to macroscale materials. The morphology, mechanical properties, and functionality (via protein chimeras) of Ubx materials are all easily engineered. Ubx materials are also compatible with cells in culture. These properties make Ubx attractive as a potential tissue engineering scaffold, but to be used as such they must be biocompatible and nonimmunogenic. In this study, we assess whether Ubx materials are suitable for in vivo applications. When implanted into mice, Ubx fibers attracted few immune cells to the implant area. Sera from mice implanted with Ubx contain little to no antibodies capable of recognizing Ubx. Furthermore, Ubx fibers cultured with macrophages in vitro did not lyse or activate the macrophages, as measured by TNF-α and NO secretion. Finally, Ubx fibers do not cause hemolysis when incubated with human red blood cells. The minimal effects observed are comparable with those induced by biomaterials used successfully in vivo. We conclude Ubx materials are biocompatible and nonimmunogenic.


Asunto(s)
Materiales Biocompatibles/farmacología , Proteínas de Drosophila/inmunología , Proteínas de Drosophila/farmacología , Drosophila melanogaster/metabolismo , Proteínas de Homeodominio/inmunología , Proteínas de Homeodominio/farmacología , Factores de Transcripción/inmunología , Factores de Transcripción/farmacología , Animales , Formación de Anticuerpos/efectos de los fármacos , Citocinas/metabolismo , Hemólisis/efectos de los fármacos , Humanos , Implantes Experimentales , Inflamación/patología , Mediadores de Inflamación/metabolismo , Activación de Macrófagos/efectos de los fármacos , Ratones Endogámicos C57BL , Péptido Hidrolasas/metabolismo
9.
Methods Mol Biol ; 1196: 211-30, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25151166

RESUMEN

Understanding gene regulation by Hox transcription factors requires understanding the forces that underlie DNA binding by these proteins. Electrophoretic mobility shift analysis (EMSA) not only allows measurement of protein affinity and cooperativity but also permits visualization of differently migrating protein-DNA complexes, including complexes with different compositions or complexes with identical compositions yet assembled in different geometries. Furthermore, protein activity can be measured, allowing correction of binding constants for the percentage of protein that is properly folded and capable of binding DNA. Protocols for measuring protein activity and the equilibrium DNA-binding dissociation constant (K d) are provided. This versatile assay system can be adjusted based on specific needs to measure other parameters, including the kinetic association and dissociation constants (k a and k d) and the formation of heterologous protein-protein interactions.


Asunto(s)
ADN/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Proteínas de Homeodominio/metabolismo , Animales , Drosophila melanogaster , Oligonucleótidos/metabolismo , Unión Proteica
10.
PLoS One ; 9(10): e108217, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25286318

RESUMEN

Interactions between structured proteins require a complementary topology and surface chemistry to form sufficient contacts for stable binding. However, approximately one third of protein interactions are estimated to involve intrinsically disordered regions of proteins. The dynamic nature of disordered regions before and, in some cases, after binding calls into question the role of partner topology in forming protein interactions. To understand how intrinsically disordered proteins identify the correct interacting partner proteins, we evaluated interactions formed by the Drosophila melanogaster Hox transcription factor Ultrabithorax (Ubx), which contains both structured and disordered regions. Ubx binding proteins are enriched in specific folds: 23 of its 39 partners include one of 7 folds, out of the 1195 folds recognized by SCOP. For the proteins harboring the two most populated folds, DNA-RNA binding 3-helical bundles and α-α superhelices, the regions of the partner proteins that exhibit these preferred folds are sufficient for Ubx binding. Three disorder-containing regions in Ubx are required to bind these partners. These regions are either alternatively spliced or multiply phosphorylated, providing a mechanism for cellular processes to regulate Ubx-partner interactions. Indeed, partner topology correlates with the ability of individual partner proteins to bind Ubx spliceoforms. Partners bind different disordered regions within Ubx to varying extents, creating the potential for competition between partners and cooperative binding by partners. The ability of partners to bind regions of Ubx that activate transcription and regulate DNA binding provides a mechanism for partners to modulate transcription regulation by Ubx, and suggests that one role of disorder in Ubx is to coordinate multiple molecular functions in response to tissue-specific cues.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Homeodominio/metabolismo , Proteínas Intrínsecamente Desordenadas/metabolismo , Factores de Transcripción/metabolismo , Empalme Alternativo/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Sitios de Unión , ADN/metabolismo , Proteínas de Drosophila/química , Proteínas de Homeodominio/química , Proteínas Intrínsecamente Desordenadas/química , Datos de Secuencia Molecular , Proteínas Mutantes/metabolismo , Unión Proteica , Mapeo de Interacción de Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteoma/metabolismo , Factores de Transcripción/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA