RESUMEN
Colorectal cancer (CRC) is a commonly occurring tumor type worldwide, and its development is governed by a connection between genetic variations and acquired factors. Carbonic anhydrase 9 (CA9) is a cell-surface pH modulator that has been demonstrated to contribute to key steps of cancer progression. Here, we attempted to interrogate the effect of CA9 gene polymorphisms on the development of CRC in 470 cases and 470 gender- and age-matched non-cancer controls. We found that none of three CA9 single-nucleotide polymorphisms (SNPs) tested, including rs2071676, rs3829078, and rs1048638, was significantly associated with the occurrence of CRC. Yet, while evaluating the clinicopathological variables, cases carrying at least one reference allele (G allele) of rs2071676 tended to develop poorly differentiated tumors less frequently than those who are homozygous for the alternative allele (A allele) of rs2071676 (GA+GG vs AA; OR, 0.483; 95% CI, 0.242-0.963; p=0.036). Further stratification revealed that as compared to homozygous carriers of the alternative allele (AA), cases of colon cancer bearing at least one reference allele of rs2071676 (GA+GG) less frequently developed poorly differentiated tumors (OR, 0.449; 95% CI, 0.221-0.911; p=0.024) and lymphovascular invasion (OR, 0.570; 95% CI, 0.361-0.900; p=0.015). Such genetic effect was exclusively observed in colon cancer but not in rectal cancer. Our results indicate an anatomical site-specific impact of CA9 gene polymorphisms on modulating the progression of colorectal malignancies.