RESUMEN
PD-1 blockade unleashes CD8 T cells1, including those specific for mutation-associated neoantigens (MANA), but factors in the tumour microenvironment can inhibit these T cell responses. Single-cell transcriptomics have revealed global T cell dysfunction programs in tumour-infiltrating lymphocytes (TIL). However, the majority of TIL do not recognize tumour antigens2, and little is known about transcriptional programs of MANA-specific TIL. Here, we identify MANA-specific T cell clones using the MANA functional expansion of specific T cells assay3 in neoadjuvant anti-PD-1-treated non-small cell lung cancers (NSCLC). We use their T cell receptors as a 'barcode' to track and analyse their transcriptional programs in the tumour microenvironment using coupled single-cell RNA sequencing and T cell receptor sequencing. We find both MANA- and virus-specific clones in TIL, regardless of response, and MANA-, influenza- and Epstein-Barr virus-specific TIL each have unique transcriptional programs. Despite exposure to cognate antigen, MANA-specific TIL express an incompletely activated cytolytic program. MANA-specific CD8 T cells have hallmark transcriptional programs of tissue-resident memory (TRM) cells, but low levels of interleukin-7 receptor (IL-7R) and are functionally less responsive to interleukin-7 (IL-7) compared with influenza-specific TRM cells. Compared with those from responding tumours, MANA-specific clones from non-responding tumours express T cell receptors with markedly lower ligand-dependent signalling, are largely confined to HOBIThigh TRM subsets, and coordinately upregulate checkpoints, killer inhibitory receptors and inhibitors of T cell activation. These findings provide important insights for overcoming resistance to PD-1 blockade.
Asunto(s)
Antígenos de Neoplasias/inmunología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Regulación de la Expresión Génica , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Antígenos de Neoplasias/genética , Linfocitos T CD8-positivos/inmunología , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Células Cultivadas , Humanos , Memoria Inmunológica , Neoplasias Pulmonares/genética , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , RNA-Seq , Receptores de Interleucina-7/inmunología , Análisis de la Célula Individual , Transcriptoma/genética , Microambiente TumoralRESUMEN
HIV-1 infection is incurable due to the persistence of the virus in a latent reservoir of resting memory CD4+ T cells. "Shock-and-kill" approaches that seek to induce HIV-1 gene expression, protein production, and subsequent targeting by the host immune system have been unsuccessful due to a lack of effective latency-reversing agents (LRAs) and kill strategies. In an effort to develop reagents that could be used to promote killing of infected cells, we constructed T cell receptor (TCR)-mimic antibodies to HIV-1 peptide-major histocompatibility complexes (pMHC). Using phage display, we panned for phages expressing antibody-like variable sequences that bound HIV-1 pMHC generated using the common HLA-A*02:01 allele. We targeted three epitopes in Gag and reverse transcriptase identified and quantified via Poisson detection mass spectrometry from cells infected in vitro with a pseudotyped HIV-1 reporter virus (NL4.3 dEnv). Sequences isolated from phages that bound these pMHC were cloned into a single-chain diabody backbone (scDb) sequence, such that one fragment is specific for an HIV-1 pMHC and the other fragment binds to CD3ε, an essential signal transduction subunit of the TCR. Thus, these antibodies utilize the sensitivity of T cell signaling as readouts for antigen processing and as agents to promote killing of infected cells. Notably, these scDbs are exquisitely sensitive and specific for the peptide portion of the pMHC. Most importantly, one scDb caused killing of infected cells presenting a naturally processed target pMHC. This work lays the foundation for a novel therapeutic killing strategy toward elimination of the HIV-1 reservoir.
Asunto(s)
Anticuerpos Biespecíficos , Infecciones por VIH , Seropositividad para VIH , VIH-1 , Linfocitos T CD4-Positivos , Humanos , Imitación Molecular , Receptores de Antígenos de Linfocitos T , Latencia del VirusRESUMEN
Developing therapeutic agents with potent antitumor activity that spare normal tissues remains a significant challenge. Clonal loss of heterozygosity (LOH) is a widespread and irreversible genetic alteration that is exquisitely specific to cancer cells. We hypothesized that LOH events can be therapeutically targeted by "inverting" the loss of an allele in cancer cells into an activating signal. Here we describe a proof-of-concept approach utilizing engineered T cells approximating NOT-gate Boolean logic to target counterexpressed antigens resulting from LOH events in cancer. The NOT gate comprises a chimeric antigen receptor (CAR) targeting the allele of human leukocyte antigen (HLA) that is retained in the cancer cells and an inhibitory CAR (iCAR) targeting the HLA allele that is lost in the cancer cells. We demonstrate that engineered T cells incorporating such NOT-gate logic can be activated in a genetically predictable manner in vitro and in mice to kill relevant cancer cells. This therapeutic approach, termed NASCAR (Neoplasm-targeting Allele-Sensing CAR), could, in theory, be extended to LOH of other polymorphic genes that result in altered cell surface antigens in cancers.
Asunto(s)
Biomarcadores de Tumor , Inmunoterapia , Pérdida de Heterocigocidad , Terapia Molecular Dirigida , Neoplasias/etiología , Neoplasias/terapia , Alelos , Antígenos de Neoplasias/inmunología , Tratamiento Basado en Trasplante de Células y Tejidos , Antígenos HLA/genética , Antígenos HLA/inmunología , Humanos , Inmunoterapia/métodos , Inmunoterapia Adoptiva , Terapia Molecular Dirigida/efectos adversos , Terapia Molecular Dirigida/métodos , Anticuerpos de Cadena Única/farmacología , Anticuerpos de Cadena Única/uso terapéuticoRESUMEN
BACKGROUND: Pivotal clinical trials provide critical evidence to regulators regarding a product's suitability for marketing approval. The objectives of this study are (1) to characterize select features of trials for oncology products approved by the U.S. Food and Drug Administration between 2015 and 2017; and (2) to quantify the costs of these trials and how such costs varied based on trial characteristics. METHODS: We identified novel oncology therapeutic drugs, and their respective pivotal trials, approved between 2015 and 2017 using annual summary reports from the Food and Drug Administration. Cost estimates for each pivotal trial were calculated using IQVIA's CostPro, a clinical trial cost estimating tool based on executed contracts between pharmaceutical manufacturers and contract research organizations. Measures of drug and trial characteristics included trial design, end point, patient enrollment, and regulatory pathway. We also performed sensitivity analyses that varied assumptions regarding how efficiently each trial was conducted. RESULTS: A total of 39 pivotal clinical trials provided the basis for Food and Drug Administration approval of 30 new oncology drugs from 2015 to 2017. Among these trials, primary end points were objective response rate in 20 (51.3%), progression-free survival in 13 (33.3%), and overall survival in 6 (15.4%). Twenty trials (51.3%) were single-arm studies. The median estimated cost of oncology pivotal trials was $31.7 million (interquartile range = $17.0-$60.4 million). Trials with objective response rate as primary end point had a median estimate of $17.7 million (interquartile range = $11.9-$27.1 million), compared with trials examining progression-free survival ($42.3 million, interquartile range = $34.6-$101.2 million) or overall survival ($79.4 million, interquartile range = $56.9-$97.7 million) (p < 0.001). Estimated costs for single-arm trials ($17.7 million, interquartile range = $11.9-$23.7 million) were less than for trials with a placebo-controlled ($56.7 million, interquartile range = $40.9-$103.9 million) or active control arm ($67.6 million, IQR = $35.5-$93.5 million) (p < 0.001). CONCLUSIONS: Relative to the estimated costs of drug development, the costs of these oncology pivotal trials were modest, with trials that produced more valuable scientific information costing more than their counterparts.
Asunto(s)
Antineoplásicos/uso terapéutico , Ensayos Clínicos como Asunto/economía , Neoplasias/tratamiento farmacológico , United States Food and Drug Administration , Antineoplásicos/economía , Costos y Análisis de Costo , Aprobación de Drogas/economía , Humanos , Estados UnidosRESUMEN
BACKGROUND: Whether the weaning outcome of solid cancer patients receiving mechanical ventilation (MV) in the intensive care unit (ICU) is comparable to that in non-cancer patients is unknown. The aim of this study was to compare the weaning outcomes between non-cancer patients and patients with different types of cancer. METHODS: We studied patients requiring MV during ICU stay for medical reasons between 2012 and 2014. Cancer patients were grouped into those with lung cancer (LC), head and neck cancer (HNC), hepatocellular carcinoma (HCC), and other cancers (OC). The primary endpoint was successful weaning at day 90 after the initiation of MV, and the main secondary endpoints were 28-day and 90-day mortality after ICU admission. RESULTS: Five hundred and eighteen patients with solid cancers and 1362 non-cancer patients were recruited. The rate of successful weaning at day 90 was 57.9% in cancer patients, which was lower than 68.9% in non-cancer patients (p < 0.001). Compared to non-cancer patients, LC was associated with a lower probability of weaning at day 90 (hazard ratio 0.565, 95% CI 0.446 to 0.715), while HNC, HCC, and OC had similar probabilities. The 28-day and 90-day mortality rates were higher in cancer patients than in non-cancer patients (45.2% vs. 29.4%, and 65.6% vs. 37.7%, respectively, both p < 0.001). CONCLUSION: Among mechanically ventilated patients in the ICU, those with LC were associated with a lower probability of weaning at day 90 compared to non-cancer patients.
Asunto(s)
Carcinoma Hepatocelular/complicaciones , Neoplasias Hepáticas/complicaciones , Insuficiencia Respiratoria/terapia , Desconexión del Ventilador , Anciano , Anciano de 80 o más Años , Carcinoma Hepatocelular/mortalidad , Femenino , Mortalidad Hospitalaria , Humanos , Unidades de Cuidados Intensivos , Neoplasias Hepáticas/mortalidad , Masculino , Persona de Mediana Edad , Insuficiencia Respiratoria/etiología , Estudios Retrospectivos , Análisis de Supervivencia , Taiwán/epidemiología , Factores de Tiempo , Insuficiencia del TratamientoRESUMEN
BACKGROUND: In 2011, two national policies aiming to foster hospice services for terminal cancer patients took effect in Taiwan. The single-payer National Health Insurance of Taiwan started to reimburse full hospice services. The national hospital accreditation program, which graded all hospitals, incorporated hospice utilization in its evaluation. We assessed the impact of these national policies. METHODS: A cohort of 249,394 patients aged ≥18 years who died of cancer between 2008 and 2013 were identified from the National Death Registry. We retrieved utilization data of medical services and compared the health care utilization in the final month of life before and after the implementation of the new policies. RESULTS: After the policy changes, hospice utilization increased from 20.8% to 36.2%. In a multivariate analysis adjusting for patient demographics, cancer features, and hospital characteristics, hospice utilization significantly increased after 2011 (adjusted odds ratio [AOR] 2.35, p < .001), accompanied by a decrease in intensive care unit (ICU) admissions, invasive mechanical ventilation (IMV), and cardiopulmonary resuscitation (CPR; AORs 0.87, 0.75, and 0.80, respectively; all p < .001). The patients who received hospice services were significantly less likely to receive ICU admissions, IMV, and CPR (AORs 0.20, 0.12, and 0.10, respectively; all p < .001). Hospice utilization was associated with an adjusted net savings of U.S. $696.90 (25.2%, p < .001) per patient in the final month of life. CONCLUSION: The national policy changes fostering hospice care significantly increased hospice utilization, decreased invasive end-of-life care, and reduced the medical costs of terminal cancer patients. IMPLICATIONS FOR PRACTICE: National policies fostering hospice care significantly increased hospice utilization, decreased invasive end-of-life care, and reduced the medical costs of terminal cancer patients.
Asunto(s)
Cuidados Paliativos al Final de la Vida/estadística & datos numéricos , Neoplasias , Anciano , Anciano de 80 o más Años , Femenino , Hospitales para Enfermos Terminales/estadística & datos numéricos , Hospitalización/estadística & datos numéricos , Humanos , Masculino , Persona de Mediana Edad , Neoplasias/terapia , Taiwán , Cuidado Terminal/métodos , Cuidado Terminal/estadística & datos numéricosRESUMEN
Epithelioid trophoblastic tumor (ETT) is a rare chemoresistant gestational trophoblastic neoplasm that typically presents as an intrauterine lesion. To our knowledge, no isolated abdominal wall ETT around a Cesarean scar has been reported. Here we describe a 54-yr-old woman with a complex obstetric history who presented with a solitary abdominal wall tumor adjacent to the abdominal Cesarean section scar. The tumor demonstrated typical morphologic and immunophenotypic features of ETT. The gestational origin of the tumor was confirmed by microsatellite genotyping. The tumor enlarged despite the patient undergoing multiagent chemotherapy. Whole-exome sequencing was performed to explore the mechanisms underlying chemoresistance. The ATP-binding cassette subfamily B member 1 (ABCB1) 3435CC genotype, and a putative deleterious x-ray cross-complementing group 4 (XRCC4) Ala73Pro mutations were found. In conclusion, ETT may present as a solitary abdominal wall lesion and microsatellite genotyping could facilitate the determination of its gestational origin. More studies are required to provide mechanistic insights into the chemoresistance of ETT.
Asunto(s)
Enfermedad Trofoblástica Gestacional/patología , Neoplasias Peritoneales/patología , Cesárea , Cicatriz , Femenino , Genotipo , Enfermedad Trofoblástica Gestacional/diagnóstico por imagen , Enfermedad Trofoblástica Gestacional/genética , Humanos , Repeticiones de Microsatélite/genética , Persona de Mediana Edad , Neoplasias Peritoneales/diagnóstico por imagen , Neoplasias Peritoneales/genética , EmbarazoRESUMEN
Two types of engineered T cells have been successfully used to treat patients with cancer, one with an antigen recognition domain derived from antibodies [chimeric antigen receptors (CARs)] and the other derived from T cell receptors (TCRs). CARs use high-affinity antigen-binding domains and costimulatory domains to induce T cell activation but can only react against target cells with relatively high amounts of antigen. TCRs have a much lower affinity for their antigens but can react against target cells displaying only a few antigen molecules. Here, we describe a new type of receptor, called a Co-STAR (for costimulatory synthetic TCR and antigen receptor), that combines aspects of both CARs and TCRs. In Co-STARs, the antigen-recognizing components of TCRs are replaced by high-affinity antibody fragments, and costimulation is provided by two modules that drive NF-κB signaling (MyD88 and CD40). Using a TCR-mimic antibody fragment that targets a recurrent p53 neoantigen presented in a common human leukocyte antigen (HLA) allele, we demonstrate that T cells equipped with Co-STARs can kill cancer cells bearing low densities of antigen better than T cells engineered with conventional CARs and patient-derived TCRs in vitro. In mouse models, we show that Co-STARs mediate more robust T cell expansion and more durable tumor regressions than TCRs similarly modified with MyD88 and CD40 costimulation. Our data suggest that Co-STARs may have utility for other peptide-HLA antigens in cancer and other targets where antigen density may limit the efficacy of engineered T cells.
Asunto(s)
Neoplasias , Receptores de Antígenos de Linfocitos T , Receptores Quiméricos de Antígenos , Humanos , Animales , Receptores Quiméricos de Antígenos/metabolismo , Receptores Quiméricos de Antígenos/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores de Antígenos de Linfocitos T/inmunología , Neoplasias/inmunología , Neoplasias/terapia , Ratones , Linfocitos T/inmunología , Linfocitos T/metabolismo , Línea Celular Tumoral , Antígenos de Neoplasias/inmunología , Antígenos de Neoplasias/metabolismo , Transducción de SeñalRESUMEN
Specificity remains a major challenge to current therapeutic strategies for cancer. Mutation associated neoantigens (MANAs) are products of genetic alterations, making them highly specific therapeutic targets. MANAs are HLA-presented (pHLA) peptides derived from intracellular mutant proteins that are otherwise inaccessible to antibody-based therapeutics. Here, we describe the cryo-EM structure of an antibody-MANA pHLA complex. Specifically, we determine a TCR mimic (TCRm) antibody bound to its MANA target, the KRASG12V peptide presented by HLA-A*03:01. Hydrophobic residues appear to account for the specificity of the mutant G12V residue. We also determine the structure of the wild-type G12 peptide bound to HLA-A*03:01, using X-ray crystallography. Based on these structures, we perform screens to validate the key residues required for peptide specificity. These experiments led us to a model for discrimination between the mutant and the wild-type peptides presented on HLA-A*03:01 based exclusively on hydrophobic interactions.
Asunto(s)
Anticuerpos , Proteínas Proto-Oncogénicas p21(ras) , Proteínas Proto-Oncogénicas p21(ras)/genética , Reconocimiento en Psicología , Interacciones Hidrofóbicas e Hidrofílicas , Antígenos HLA-A/genéticaRESUMEN
The presentation of neoantigens on the cell membrane is the foundation for most cancer immunotherapies. Due to their extremely low abundance, analyzing neoantigens in clinical samples is technically difficult, hindering the development of neoantigen-based therapeutics for more general use in the treatment of diverse cancers worldwide. Here, we describe an integrated system, "Valid-NEO", which reveals patient-specific cancer neoantigen therapeutic targets from minute amounts of clinical samples through direct observation, without computer-based prediction, in a sensitive, rapid, and reproducible manner. The overall four-hour procedure involves mass spectrometry analysis of neoantigens purified from tumor samples through recovery of HLA molecules with HLA antibodies. Valid-NEO could be applicable to the identification and quantification of presented neoantigens in cancer patients, particularly when only limited amounts of sample are available.
RESUMEN
Several current immunotherapy approaches target private neoantigens derived from mutations that are unique to individual patients' tumors. However, immunotherapeutic agents can also be developed against public neoantigens derived from recurrent mutations in cancer driver genes. The latter approaches target proteins that are indispensable for tumor growth, and each therapeutic agent can be applied to numerous patients. Here we review the opportunities and challenges involved in the identification of suitable public neoantigen targets and the development of therapeutic agents targeting them.
Asunto(s)
Antígenos de Neoplasias , Neoplasias , Antígenos de Neoplasias/genética , Humanos , Factores Inmunológicos/uso terapéutico , Inmunoterapia , Mutación , Neoplasias/terapia , OncogenesRESUMEN
Immunotherapies such as chimeric antigen receptor (CAR) T cells and bispecific antibodies redirect healthy T cells to kill cancer cells expressing the target antigen. The pan-B cell antigen-targeting immunotherapies have been remarkably successful in treating B cell malignancies. Such therapies also result in the near-complete loss of healthy B cells, but this depletion is well tolerated by patients. Although analogous targeting of pan-T cell markers could, in theory, help control T cell cancers, the concomitant healthy T cell depletion would result in severe and unacceptable immunosuppression. Thus, therapies directed against T cell cancers require more selective targeting. Here, we describe an approach to target T cell cancers through T cell receptor (TCR) antigens. Each T cell, normal or malignant, expresses a unique TCR ß chain generated from 1 of 30 TCR ß chain variable gene families (TRBV1 to TRBV30). We hypothesized that bispecific antibodies targeting a single TRBV family member expressed in malignant T cells could promote killing of these cancer cells, while preserving healthy T cells that express any of the other 29 possible TRBV family members. We addressed this hypothesis by demonstrating that bispecific antibodies targeting TRBV5-5 (α-V5) or TRBV12 (α-V12) specifically lyse relevant malignant T cell lines and patient-derived T cell leukemias in vitro. Treatment with these antibodies also resulted in major tumor regressions in mouse models of human T cell cancers. This approach provides an off-the-shelf, T cell cancer selective targeting approach that preserves enough healthy T cells to maintain cellular immunity.
Asunto(s)
Anticuerpos Biespecíficos , Trastornos Linfoproliferativos/terapia , Linfocitos T/patología , Humanos , Receptores de Antígenos de Linfocitos T alfa-betaRESUMEN
BACKGROUND: Current therapy for osteosarcoma pulmonary metastases (PMs) is ineffective. The mechanisms that prevent successful immunotherapy in osteosarcoma are incompletely understood. We investigated the tumor microenvironment of metastatic osteosarcoma with the goal of harnessing the immune system as a therapeutic strategy. METHODS: 66 osteosarcoma tissue specimens were analyzed by immunohistochemistry (IHC) and immune markers were digitally quantified. Tumor-infiltrating lymphocytes (TILs) from 25 specimens were profiled by functional cytometry. Comparative transcriptomic studies of distinct tumor-normal lung 'PM interface' and 'PM interior' regions from 16 PMs were performed. Clinical follow-up (median 24 months) was available from resection. RESULTS: IHC revealed a statistically significantly higher concentration of TILs expressing immune checkpoint and immunoregulatory molecules in PMs compared with primary bone tumors (including programmed cell death 1 (PD-1), programmed death ligand 1 (PD-L1), lymphocyte-activation gene 3 (LAG-3), T-cell immunoglobulin and mucin domain-containing protein 3 (TIM-3), and indoleamine 2,3-dioxygenase (IDO1). Remarkably, these lymphocytes are excluded at the PM interface compared with PM interior. TILs from PMs exhibited significantly higher amounts of PD-1 and LAG-3 and functional cytokines including interferon-γ (IFNγ) by flow cytometry. Gene expression profiling further confirmed the presence of CD8 and CD4 lymphocytes concentrated at the PM interface, along with upregulation of immunoregulatory molecules and IFNγ-driven genes in the same region. We further discovered a strong alternatively activated macrophage signature throughout the entire PMs along with a polymorphonuclear myeloid-derived suppressor cell signature focused at the PM interface. Expression of PD-L1, LAG-3, and colony-stimulating factor 1 receptor (CSF1R) at the PM interface was associated with significantly worse progression-free survival (PFS), while gene sets indicative of productive T cell immune responses (CD8 T cells, T cell survival, and major histocompatibility complex class 1 expression) were associated with significantly improved PFS. CONCLUSIONS: Osteosarcoma PMs exhibit immune exclusion characterized by the accumulation of TILs at the PM interface. These TILs produce effector cytokines, suggesting their capability of activation and recognition of tumor antigens. Our findings suggest cooperative immunosuppressive mechanisms in osteosarcoma PMs including immune checkpoint molecule expression and the presence of immunosuppressive myeloid cells. We identify cellular and molecular signatures that are associated with patient outcomes, which could be exploited for successful immunotherapy.
Asunto(s)
Biomarcadores de Tumor/análisis , Neoplasias Óseas/terapia , Citocinas/análisis , Proteínas de Punto de Control Inmunitario/análisis , Inmunoterapia , Neoplasias Pulmonares/terapia , Linfocitos Infiltrantes de Tumor/inmunología , Osteosarcoma/terapia , Microambiente Tumoral/inmunología , Macrófagos Asociados a Tumores/inmunología , Biomarcadores de Tumor/genética , Neoplasias Óseas/genética , Neoplasias Óseas/inmunología , Neoplasias Óseas/patología , Citocinas/genética , Registros Electrónicos de Salud , Humanos , Proteínas de Punto de Control Inmunitario/genética , Inmunoterapia/efectos adversos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/secundario , Activación de Linfocitos , Activación de Macrófagos , Células Supresoras de Origen Mieloide , Osteosarcoma/genética , Osteosarcoma/inmunología , Osteosarcoma/secundario , Supervivencia sin Progresión , Estudios Retrospectivos , TranscriptomaRESUMEN
Chimeric antigen receptor (CAR) T cells have emerged as a promising class of therapeutic agents, generating remarkable responses in the clinic for a subset of human cancers. One major challenge precluding the wider implementation of CAR therapy is the paucity of tumor-specific antigens. Here, we describe the development of a CAR targeting the tumor-specific isocitrate dehydrogenase 2 (IDH2) with R140Q mutation presented on the cell surface in complex with a common human leukocyte antigen allele, HLA-B*07:02. Engineering of the hinge domain of the CAR, as well as crystal structure-guided optimization of the IDH2R140Q-HLA-B*07:02-targeting moiety, enhances the sensitivity and specificity of CARs to enable targeting of this HLA-restricted neoantigen. This approach thus holds promise for the development and optimization of immunotherapies specific to other cancer driver mutations that are difficult to target by conventional means.
Asunto(s)
Antígeno HLA-B7/química , Isocitrato Deshidrogenasa/metabolismo , Ingeniería de Proteínas/métodos , Receptores Quiméricos de Antígenos/química , Animales , Antígenos de Neoplasias/metabolismo , Células COS , Línea Celular , Chlorocebus aethiops , Epítopos , Antígeno HLA-B7/metabolismo , Humanos , Fragmentos Fab de Inmunoglobulinas/química , Isocitrato Deshidrogenasa/química , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/inmunología , Mutación , Biblioteca de Péptidos , Conformación Proteica , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/metabolismo , Linfocitos T/fisiologíaRESUMEN
BACKGROUNDRecent studies have reported T cell immunity to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in unexposed donors, possibly due to crossrecognition by T cells specific for common cold coronaviruses (CCCs). True T cell crossreactivity, defined as the recognition by a single TCR of more than one distinct peptide-MHC ligand, has never been shown in the context of SARS-CoV-2.METHODSWe used the viral functional expansion of specific T cells (ViraFEST) platform to identify T cell responses crossreactive for the spike (S) glycoproteins of SARS-CoV-2 and CCCs at the T cell receptor (TCR) clonotype level in convalescent COVID-19 patients (CCPs) and SARS-CoV-2-unexposed donors. Confirmation of SARS-CoV-2/CCC crossreactivity and assessments of functional avidity were performed using a TCR cloning and transfection system.RESULTSMemory CD4+ T cell clonotypes that crossrecognized the S proteins of SARS-CoV-2 and at least one other CCC were detected in 65% of CCPs and unexposed donors. Several of these TCRs were shared among multiple donors. Crossreactive T cells demonstrated significantly impaired SARS-CoV-2-specific proliferation in vitro relative to monospecific CD4+ T cells, which was consistent with lower functional avidity of their TCRs for SARS-CoV-2 relative to CCC.CONCLUSIONSOur data confirm, for what we believe is the first time, the existence of unique memory CD4+ T cell clonotypes crossrecognizing SARS-CoV-2 and CCCs. The lower avidity of crossreactive TCRs for SARS-CoV-2 may be the result of antigenic imprinting, such that preexisting CCC-specific memory T cells have reduced expansive capacity upon SARS-CoV-2 infection. Further studies are needed to determine how these crossreactive T cell responses affect clinical outcomes in COVID-19 patients.FUNDINGNIH funding (U54CA260492, P30CA006973, P41EB028239, R01AI153349, R01AI145435-A1, R21AI149760, and U19A1088791) was provided by the National Institute of Allergy and Infectious Diseases, the National Cancer Institute, and the National Institute of Biomedical Imaging and Bioengineering. The Bloomberg~Kimmel Institute for Cancer Immunotherapy, The Johns Hopkins University Provost, and The Bill and Melinda Gates Foundation provided funding for this study.
Asunto(s)
Linfocitos T CD4-Positivos/inmunología , COVID-19/inmunología , Epítopos de Linfocito T/inmunología , Memoria Inmunológica , Receptores de Antígenos de Linfocitos T/inmunología , SARS-CoV-2/inmunología , Adulto , Anciano , Reacciones Cruzadas , Femenino , Humanos , Células Jurkat , Masculino , Persona de Mediana EdadRESUMEN
Mutations in the RAS oncogenes occur in multiple cancers, and ways to target these mutations has been the subject of intense research for decades. Most of these efforts are focused on conventional small-molecule drugs rather than antibody-based therapies because the RAS proteins are intracellular. Peptides derived from recurrent RAS mutations, G12V and Q61H/L/R, are presented on cancer cells in the context of two common human leukocyte antigen (HLA) alleles, HLA-A3 and HLA-A1, respectively. Using phage display, we isolated single-chain variable fragments (scFvs) specific for each of these mutant peptide-HLA complexes. The scFvs did not recognize the peptides derived from the wild-type form of RAS proteins or other related peptides. We then sought to develop an immunotherapeutic agent that was capable of killing cells presenting very low levels of these RAS-derived peptide-HLA complexes. Among many variations of bispecific antibodies tested, one particular format, the single-chain diabody (scDb), exhibited superior reactivity to cells expressing low levels of neoantigens. We converted the scFvs to this scDb format and demonstrated that they were capable of inducing T cell activation and killing of target cancer cells expressing endogenous levels of the mutant RAS proteins and cognate HLA alleles. CRISPR-mediated alterations of the HLA and RAS genes provided strong genetic evidence for the specificity of the scDbs. Thus, this approach could be applied to other common oncogenic mutations that are difficult to target by conventional means, allowing for more specific anticancer therapeutics.
Asunto(s)
Anticuerpos Biespecíficos/farmacología , Antígenos de Neoplasias , Biomarcadores de Tumor/antagonistas & inhibidores , Proteínas Mutantes/antagonistas & inhibidores , Proteínas ras/antagonistas & inhibidores , Secuencia de Aminoácidos , Animales , Anticuerpos Biespecíficos/inmunología , Antígenos de Neoplasias/química , Antígenos de Neoplasias/inmunología , Biomarcadores de Tumor/química , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/inmunología , Línea Celular , Reacciones Cruzadas , Antígenos HLA/inmunología , Humanos , Activación de Linfocitos/genética , Activación de Linfocitos/inmunología , Proteínas Mutantes/química , Proteínas Mutantes/inmunología , Mutación , Fragmentos de Péptidos , Unión Proteica/inmunología , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Proteínas ras/química , Proteínas ras/genética , Proteínas ras/inmunologíaRESUMEN
TP53 (tumor protein p53) is the most commonly mutated cancer driver gene, but drugs that target mutant tumor suppressor genes, such as TP53, are not yet available. Here, we describe the identification of an antibody highly specific to the most common TP53 mutation (R175H, in which arginine at position 175 is replaced with histidine) in complex with a common human leukocyte antigen-A (HLA-A) allele on the cell surface. We describe the structural basis of this specificity and its conversion into an immunotherapeutic agent: a bispecific single-chain diabody. Despite the extremely low p53 peptide-HLA complex density on the cancer cell surface, the bispecific antibody effectively activated T cells to lyse cancer cells that presented the neoantigen in vitro and in mice. This approach could in theory be used to target cancers containing mutations that are difficult to target in conventional ways.
Asunto(s)
Anticuerpos Biespecíficos/inmunología , Anticuerpos Antineoplásicos/inmunología , Antígenos de Neoplasias/inmunología , Antígeno HLA-A2/inmunología , Neoplasias/terapia , Proteína p53 Supresora de Tumor/inmunología , Alelos , Animales , Anticuerpos Biespecíficos/química , Anticuerpos Biespecíficos/uso terapéutico , Anticuerpos Antineoplásicos/química , Anticuerpos Antineoplásicos/uso terapéutico , Arginina/genética , Células COS , Chlorocebus aethiops , Femenino , Células HEK293 , Antígeno HLA-A2/química , Antígeno HLA-A2/genética , Histidina/genética , Humanos , Inmunización Pasiva , Células Jurkat , Activación de Linfocitos , Ratones Endogámicos NOD , Mutación , Linfocitos T/inmunología , Proteína p53 Supresora de Tumor/química , Proteína p53 Supresora de Tumor/genética , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Current classification and treatment of lung cancer rely increasingly on molecular and genetic testing. Obtaining tumor tissue is not always feasible and multiple biopsies are undesirable. In response to the demand for non-invasive molecular and genetic testing in cancer care, several liquid biopsy technologies, including circulating DNA (ctDNA), have been developed. ctDNA analysis is now technically feasible to be carried out in large scales and integrated into clinical practice owing to the advances in technology. Despite the challenges in improving test accuracy and cost-effectiveness, there are huge potentials for ctDNA analysis in lung cancer management. This review focuses on the clinical utility of ctDNA analysis in lung cancer, including early detection, monitoring treatment response and detecting residual disease, identification of genetic determinants for targeted therapy, and predicting efficacy of immune checkpoint blockade.