Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 578(7796): 545-549, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32103195

RESUMEN

Chirality is ubiquitous in nature, and populations of opposite chiralities are surprisingly asymmetric at fundamental levels1,2. Examples range from parity violation in the subatomic weak force to homochirality in biomolecules. The ability to achieve chirality-selective synthesis (chiral induction) is of great importance in stereochemistry, molecular biology and pharmacology2. In condensed matter physics, a crystalline electronic system is geometrically chiral when it lacks mirror planes, space-inversion centres or rotoinversion axes1. Typically, geometrical chirality is predefined by the chiral lattice structure of a material, which is fixed on formation of the crystal. By contrast, in materials with gyrotropic order3-6, electrons spontaneously organize themselves to exhibit macroscopic chirality in an originally achiral lattice. Although such order-which has been proposed as the quantum analogue of cholesteric liquid crystals-has attracted considerable interest3-15, no clear observation or manipulation of gyrotropic order has been achieved so far. Here we report the realization of optical chiral induction and the observation of a gyrotropically ordered phase in the transition-metal dichalcogenide semimetal 1T-TiSe2. We show that shining mid-infrared circularly polarized light on 1T-TiSe2 while cooling it below the critical temperature leads to the preferential formation of one chiral domain. The chirality of this state is confirmed by the measurement of an out-of-plane circular photogalvanic current, the direction of which depends on the optical induction. Although the role of domain walls requires further investigation with local probes, the methodology demonstrated here can be applied to realize and control chiral electronic phases in other quantum materials4,16.

2.
Nature ; 565(7739): 337-342, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30559379

RESUMEN

The electrical Hall effect is the production, upon the application of an electric field, of a transverse voltage under an out-of-plane magnetic field. Studies of the Hall effect have led to important breakthroughs, including the discoveries of Berry curvature and topological Chern invariants1,2. The internal magnetization of magnets means that the electrical Hall effect can occur in the absence of an external magnetic field2; this 'anomalous' Hall effect is important for the study of quantum magnets2-7. The electrical Hall effect has rarely been studied in non-magnetic materials without external magnetic fields, owing to the constraint of time-reversal symmetry. However, only in the linear response regime-when the Hall voltage is linearly proportional to the external electric field-does the Hall effect identically vanish as a result of time-reversal symmetry; the Hall effect in the nonlinear response regime is not subject to such symmetry constraints8-10. Here we report observations of the nonlinear Hall effect10 in electrical transport in bilayers of the non-magnetic quantum material WTe2 under time-reversal-symmetric conditions. We show that an electric current in bilayer WTe2 leads to a nonlinear Hall voltage in the absence of a magnetic field. The properties of this nonlinear Hall effect are distinct from those of the anomalous Hall effect in metals: the nonlinear Hall effect results in a quadratic, rather than linear, current-voltage characteristic and, in contrast to the anomalous Hall effect, the nonlinear Hall effect results in a much larger transverse than longitudinal voltage response, leading to a nonlinear Hall angle (the angle between the total voltage response and the applied electric field) of nearly 90 degrees. We further show that the nonlinear Hall effect provides a direct measure of the dipole moment10 of the Berry curvature, which arises from layer-polarized Dirac fermions in bilayer WTe2. Our results demonstrate a new type of Hall effect and provide a way of detecting Berry curvature in non-magnetic quantum materials.

3.
Nature ; 556(7701): 355-359, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29670263

RESUMEN

Investigations of two-dimensional transition-metal chalcogenides (TMCs) have recently revealed interesting physical phenomena, including the quantum spin Hall effect1,2, valley polarization3,4 and two-dimensional superconductivity 5 , suggesting potential applications for functional devices6-10. However, of the numerous compounds available, only a handful, such as Mo- and W-based TMCs, have been synthesized, typically via sulfurization11-15, selenization16,17 and tellurization 18 of metals and metal compounds. Many TMCs are difficult to produce because of the high melting points of their metal and metal oxide precursors. Molten-salt-assisted methods have been used to produce ceramic powders at relatively low temperature 19 and this approach 20 was recently employed to facilitate the growth of monolayer WS2 and WSe2. Here we demonstrate that molten-salt-assisted chemical vapour deposition can be broadly applied for the synthesis of a wide variety of two-dimensional (atomically thin) TMCs. We synthesized 47 compounds, including 32 binary compounds (based on the transition metals Ti, Zr, Hf, V, Nb, Ta, Mo, W, Re, Pt, Pd and Fe), 13 alloys (including 11 ternary, one quaternary and one quinary), and two heterostructured compounds. We elaborate how the salt decreases the melting point of the reactants and facilitates the formation of intermediate products, increasing the overall reaction rate. Most of the synthesized materials in our library are useful, as supported by evidence of superconductivity in our monolayer NbSe2 and MoTe2 samples21,22 and of high mobilities in MoS2 and ReS2. Although the quality of some of the materials still requires development, our work opens up opportunities for studying the properties and potential application of a wide variety of two-dimensional TMCs.

4.
Proc Natl Acad Sci U S A ; 117(27): 15517-15523, 2020 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-32554603

RESUMEN

Topological electrons in semimetals are usually vulnerable to chemical doping and environment change, which restricts their potential application in future electronic devices. In this paper, we report that the type-II Dirac semimetal [Formula: see text] hosts exceptional, robust topological electrons which can tolerate extreme change of chemical composition. The Dirac electrons remain intact, even after a substantial part of V atoms have been replaced in the [Formula: see text] solid solutions. This Dirac semimetal state ends at [Formula: see text], where a Lifshitz transition to p-type trivial metal occurs. The V-Al bond is completely broken in this transition as long as the bonding orbitals are fully depopulated by the holes donated from Ti substitution. In other words, the Dirac electrons in [Formula: see text] are protected by the V-Al bond, whose molecular orbital is their bonding gravity center. Our understanding on the interrelations among electron count, chemical bond, and electronic properties in topological semimetals suggests a rational approach to search robust, chemical-bond-protected topological materials.

5.
Nano Lett ; 22(3): 1366-1373, 2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35073094

RESUMEN

MnBi2Te4 (MBT) is the first intrinsic magnetic topological insulator with the interaction of spin-momentum locked surface electrons and intrinsic magnetism, and it exhibits novel magnetic and topological phenomena. Recent studies suggested that the interaction of electrons and magnetism can be affected by the Mn-doped Bi2Te3 phase at the surface due to inevitable structural defects. Here, we report an observation of nonreciprocal transport, that is, current-direction-dependent resistance, in a bilayer composed of antiferromagnetic MBT and nonmagnetic Pt. The emergence of the nonreciprocal response below the Néel temperature confirms a correlation between nonreciprocity and intrinsic magnetism in the surface state of MBT. The angular dependence of the nonreciprocal transport indicates that nonreciprocal response originates from the asymmetry scattering of electrons at the surface of MBT mediated by magnon. Our work provides an insight into nonreciprocity arising from the correlation between magnetism and Dirac surface electrons in intrinsic magnetic topological insulators.

6.
Proc Natl Acad Sci U S A ; 116(27): 13255-13259, 2019 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-31196954

RESUMEN

Bismuth-based materials have been instrumental in the development of topological physics, even though bulk bismuth itself has been long thought to be topologically trivial. A recent study has, however, shown that bismuth is in fact a higher-order topological insulator featuring one-dimensional (1D) topological hinge states protected by threefold rotational and inversion symmetries. In this paper, we uncover another hidden facet of the band topology of bismuth by showing that bismuth is also a first-order topological crystalline insulator protected by a twofold rotational symmetry. As a result, its [Formula: see text] surface exhibits a pair of gapless Dirac surface states. Remarkably, these surface Dirac cones are "unpinned" in the sense that they are not restricted to locate at specific k points in the [Formula: see text] surface Brillouin zone. These unpinned 2D Dirac surface states could be probed directly via various spectroscopic techniques. Our analysis also reveals the presence of a distinct, previously uncharacterized set of 1D topological hinge states protected by the twofold rotational symmetry. Our study thus provides a comprehensive understanding of the topological band structure of bismuth.

7.
Nat Mater ; 19(3): 292-298, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32015531

RESUMEN

The spin Hall effect (SHE) is usually observed as a bulk effect in high-symmetry crystals with substantial spin-orbit coupling (SOC), where the symmetric spin-orbit field imposes a widely encountered trade-off between spin Hall angle (θSH) and spin diffusion length (Lsf), and spin polarization, spin current and charge current are constrained to be mutually orthogonal. Here, we report a large θSH of 0.32 accompanied by a long Lsf of 2.2 µm at room temperature in a low-symmetry few-layered semimetal MoTe2, thus identifying it as an excellent candidate for simultaneous spin generation, transport and detection. In addition, we report that longitudinal spin current with out-of-plane polarization can be generated by both transverse and vertical charge current, due to the conventional and a newly observed planar SHE, respectively. Our study suggests that manipulation of crystalline symmetries and strong SOC opens access to new charge-spin interconversion configurations and spin-orbit torques for spintronic applications.

8.
Phys Rev Lett ; 125(25): 256603, 2020 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-33416383

RESUMEN

We report an unconventional quantum spin Hall phase in the monolayer WTe_{2}, which exhibits hitherto unknown features in other topological materials. The low symmetry of the structure induces a canted spin texture in the yz plane, which dictates the spin polarization of topologically protected boundary states. Additionally, the spin Hall conductivity gets quantized (2e^{2}/h) with a spin quantization axis parallel to the canting direction. These findings are based on large-scale quantum simulations of the spin Hall conductivity tensor and nonlocal resistances in multiprobe geometries using a realistic tight-binding model elaborated from first-principle methods. The observation of this canted quantum spin Hall effect, related to the formation of topological edge states with nontrivial spin polarization, demands for specific experimental design and suggests interesting alternatives for manipulating spin information in topological materials.

9.
Phys Rev Lett ; 118(25): 257601, 2017 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-28696739

RESUMEN

We introduce the first multiorbital effective tight-binding model to describe the effect of electron-electron interactions in this system. Upon fixing all the effective hopping parameters in the normal state against an ab initio band structure, and with only the overall scale of the interactions as the sole adjustable parameter, we find that a self-consistent Hartree-Fock solution reproduces extremely well the experimental behavior of the charge density wave (CDW) order parameter in the full range 0

10.
Phys Rev Lett ; 119(2): 026404, 2017 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-28753359

RESUMEN

The recent proposal of the type-II Weyl semimetal state has attracted significant interest. In this Letter, we propose the concept of the three-dimensional type-II Dirac fermion and theoretically identify this new symmetry-protected topological state in the large family of transition-metal icosagenides, MA_{3} (M=V, Nb, Ta; A=Al, Ga, In). We show that the VAl_{3} family features a pair of strongly Lorentz-violating type-II Dirac nodes and that each Dirac node can be split into four type-II Weyl nodes with chiral charge ±1 via symmetry breaking. Furthermore, we predict that the Landau level spectrum arising from the type-II Dirac fermions in VAl_{3} is distinct from that of known Dirac or Weyl semimetals. We also demonstrate a topological phase transition from a type-II Dirac semimetal to a quadratic Weyl semimetal or a topological crystalline insulator via crystalline distortions.

11.
Phys Rev Lett ; 116(6): 066601, 2016 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-26919003

RESUMEN

The recent discovery of the first Weyl semimetal in TaAs provides the first observation of a Weyl fermion in nature. Such a topological semimetal features a novel type of anomalous surface state, the Fermi arc, which connects a pair of Weyl nodes through the boundary of the crystal. Here, we present theoretical calculations of the quasiparticle interference (QPI) patterns that arise from the surface states including the topological Fermi arcs in the Weyl semimetals TaAs and NbP. Most importantly, we discover that the QPI exhibits termination points that are fingerprints of the Weyl nodes in the interference pattern. Our results, for the first time, propose a universal interference signature of the topological Fermi arcs in TaAs, which is fundamental for scanning tunneling microscope (STM) measurements on this prototypical Weyl semimetal compound. More generally, our work provides critical guideline and methodology for STM studies on new Weyl semimetals. Further, the scattering channels revealed by our QPIs are broadly relevant to surface transport and device applications based on Weyl semimetals.

12.
Phys Rev Lett ; 116(9): 096801, 2016 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-26991191

RESUMEN

A Weyl semimetal is a new state of matter that hosts Weyl fermions as quasiparticle excitations. The Weyl fermions at zero energy correspond to points of bulk-band degeneracy, called Weyl nodes, which are separated in momentum space and are connected only through the crystal's boundary by an exotic Fermi arc surface state. We experimentally measure the spin polarization of the Fermi arcs in the first experimentally discovered Weyl semimetal TaAs. Our spin data, for the first time, reveal that the Fermi arcs' spin-polarization magnitude is as large as 80% and lies completely in the plane of the surface. Moreover, we demonstrate that the chirality of the Weyl nodes in TaAs cannot be inferred by the spin texture of the Fermi arcs. The observed nondegenerate property of the Fermi arcs is important for establishing its exact topological nature, which reveals that spins on the arc form a novel type of 2D matter. Additionally, the nearly full spin polarization we observed (∼80%) may be useful in spintronic applications.

13.
Nat Commun ; 12(1): 698, 2021 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-33514744

RESUMEN

The nonlinear Hall effect due to Berry curvature dipole (BCD) induces frequency doubling, which was recently observed in time-reversal-invariant materials. Here we report novel electric frequency doubling in the absence of BCD on a surface of the topological insulator Bi2Se3 under zero magnetic field. We observe that the frequency-doubling voltage transverse to the applied ac current shows a threefold rotational symmetry, whereas it forbids BCD. One of the mechanisms compatible with the symmetry is skew scattering, arising from the inherent chirality of the topological surface state. We introduce the Berry curvature triple, a high-order moment of the Berry curvature, to explain skew scattering under the threefold rotational symmetry. Our work paves the way to obtain a giant second-order nonlinear electric effect in high mobility quantum materials, as the skew scattering surpasses other mechanisms in the clean limit.

14.
Nat Nanotechnol ; 16(4): 421-425, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33495620

RESUMEN

The nonlinear Hall effect (NLHE), the phenomenon in which a transverse voltage can be produced without a magnetic field, provides a potential alternative for rectification or frequency doubling1,2. However, the low-temperature detection of the NLHE limits its applications3,4. Here, we report the room-temperature NLHE in a type-II Weyl semimetal TaIrTe4, which hosts a robust NLHE due to broken inversion symmetry and large band overlapping at the Fermi level. We also observe a temperature-induced sign inversion of the NLHE in TaIrTe4. Our theoretical calculations suggest that the observed sign inversion is a result of a temperature-induced shift in the chemical potential, indicating a direct correlation of the NLHE with the electronic structure at the Fermi surface. Finally, on the basis of the observed room-temperature NLHE in TaIrTe4 we demonstrate the wireless radiofrequency (RF) rectification with zero external bias and magnetic field. This work opens a door to realizing room-temperature applications based on the NLHE in Weyl semimetals.

15.
Nanotechnology ; 21(1): 015606, 2010 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-19946162

RESUMEN

The manipulated nucleation of Fe on hexagonal close-packed (hcp) and face centered cubic (fcc) areas of an Au(111) herringbone surface was demonstrated with the combined growth methods of Xe buffer layer, seed effect and low temperature deposition. Besides the herringbone kinks, bi-layer stacking at fcc gaps was observed. This preference resulted in various nucleation patterns, such as zigzag stripes and doublet islands, by properly choosing the growth condition. The idea of nucleation control through combined growth methods can be applied in other nanopatterned templates for the fabrication of self-assembled nanostructures.

16.
Adv Mater ; 32(37): e2002799, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32743908

RESUMEN

The ability to switch magnetic elements by spin-orbit-induced torques has recently attracted much attention for a path toward high-performance, nonvolatile memories with low power consumption. Realizing efficient spin-orbit-based switching requires the harnessing of both new materials and novel physics to obtain high charge-to-spin conversion efficiencies, thus making the choice of spin source crucial. Here, the observation of spin-orbit torque switching in bilayers consisting of a semimetallic film of 1T'-MoTe2 adjacent to permalloy is reported. Deterministic switching is achieved without external magnetic fields at room temperature, and the switching occurs with currents one order of magnitude smaller than those typical in devices using the best-performing heavy metals. The thickness-dependence can be understood if the interfacial spin-orbit contribution is considered in addition to the bulk spin Hall effect. Further threefold reduction in the switching current is demonstrated with resort to dumbbell-shaped magnetic elements. These findings foretell exciting prospects of using MoTe2 for low-power semimetal-material-based spin devices.

17.
Nat Commun ; 10(1): 1290, 2019 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-30894524

RESUMEN

The nature of Fermi surface defines the physical properties of conductors and many physical phenomena can be traced to its shape. Although the recent discovery of a current-dependent nonlinear magnetoresistance in spin-polarized non-magnetic materials has attracted considerable attention in spintronics, correlations between this phenomenon and the underlying fermiology remain unexplored. Here, we report the observation of nonlinear magnetoresistance at room temperature in a semimetal WTe2, with an interesting temperature-driven inversion. Theoretical calculations reproduce the nonlinear transport measurements and allow us to attribute the inversion to temperature-induced changes in Fermi surface convexity. We also report a large anisotropy of nonlinear magnetoresistance in WTe2, due to its low symmetry of Fermi surfaces. The good agreement between experiments and theoretical modeling reveals the critical role of Fermi surface topology and convexity on the nonlinear magneto-response. These results lay a new path to explore ramifications of distinct fermiology for nonlinear transport in condensed-matter.

18.
Adv Sci (Weinh) ; 5(6): 1700912, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29938171

RESUMEN

The Weyl semimetal WTe2 and MoTe2 show great potential in generating large spin currents since they possess topologically protected spin-polarized states and can carry a very large current density. In addition, the intrinsic non-centrosymmetry of WTe2 and MoTe2 endows with a unique property of crystal symmetry-controlled spin-orbit torques. An important question to be answered for developing spintronic devices is how spins relax in WTe2 and MoTe2. Here, a room-temperature spin relaxation time of 1.2 ns (0.4 ns) in WTe2 (MoTe2) thin film using the time-resolved Kerr rotation (TRKR) is reported. Based on ab initio calculation, a mechanism of long-lived spin polarization resulting from a large spin splitting around the bottom of the conduction band, low electron-hole recombination rate, and suppression of backscattering required by time-reversal and lattice symmetry operation is identified. In addition, it is found that the spin polarization is firmly pinned along the strong internal out-of-plane magnetic field induced by large spin splitting. This work provides an insight into the physical origin of long-lived spin polarization in Weyl semimetals, which could be useful to manipulate spins for a long time at room temperature.

19.
Adv Mater ; 29(4)2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27874223

RESUMEN

A metal-semiconductor phase transition in a ternary transition metal dichalcogenide (TMD) monolayer is achieved by alloying Te into WSe2 (WSe2(1-x) Te2x , where x = 0%-100%). The optical bandgaps of the WSe2(1-x) Te2x monolayer can be tuned from 1.67 to 1.44 eV (2H semiconductor) and drops to 0 eV (1Td metal), which opens up an exciting opportunity in functional electronic/optoelectronic devices.

20.
Adv Mater ; 29(21)2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28370566

RESUMEN

Due to the intriguing optical and electronic properties, 2D materials have attracted a lot of interest for the electronic and optoelectronic applications. Identifying new promising 2D materials will be rewarding toward the development of next generation 2D electronics. Here, palladium diselenide (PdSe2 ), a noble-transition metal dichalcogenide (TMDC), is introduced as a promising high mobility 2D material into the fast growing 2D community. Field-effect transistors (FETs) based on ultrathin PdSe2 show intrinsic ambipolar characteristic. The polarity of the FET can be tuned. After vacuum annealing, the authors find PdSe2 to exhibit electron-dominated transport with high mobility (µe (max) = 216 cm2 V-1 s-1 ) and on/off ratio up to 103 . Hole-dominated-transport PdSe2 can be obtained by molecular doping using F4 -TCNQ. This pioneer work on PdSe2 will spark interests in the less explored regime of noble-TMDCs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA