Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 187(21): 5951-5966.e18, 2024 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-39260373

RESUMEN

Control of the electrochemical environment in living cells is typically attributed to ion channels. Here, we show that the formation of biomolecular condensates can modulate the electrochemical environment in bacterial cells, which affects cellular processes globally. Condensate formation generates an electric potential gradient, which directly affects the electrochemical properties of a cell, including cytoplasmic pH and membrane potential. Condensate formation also amplifies cell-cell variability of their electrochemical properties due to passive environmental effect. The modulation of the electrochemical equilibria further controls cell-environment interactions, thus directly influencing bacterial survival under antibiotic stress. The condensate-mediated shift in intracellular electrochemical equilibria drives a change of the global gene expression profile. Our work reveals the biochemical functions of condensates, which extend beyond the functions of biomolecules driving and participating in condensate formation, and uncovers a role of condensates in regulating global cellular physiology.


Asunto(s)
Condensados Biomoleculares , Escherichia coli , Escherichia coli/metabolismo , Concentración de Iones de Hidrógeno , Condensados Biomoleculares/metabolismo , Condensados Biomoleculares/química , Potenciales de la Membrana
2.
Environ Sci Technol ; 58(6): 2998-3006, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38287223

RESUMEN

Acid mine drainage (AMD) from inactive coal mines can be enriched in rare earth elements (REEs) and has gained much attention as an alternative source for these technology-critical metals. However, AMD is a relatively low-grade REE resource in which the abundance of impurities and the composition variability of the feedstock create major uncertainties for the performance of REE extraction technologies. This study sought to identify AMD feedstock variables that influence the extraction efficiency of REEs by supported liquid membranes (SLMs). SLM separation is a process involving a hydrophobic membrane embedded with an extracting solvent that facilitates the selective extraction of REE ions. The major aims were to (1) assess the effectiveness of SLM-based REE separation from several AMD samples representing a spectrum of aqueous composition, (2) determine the effects of AMD storage and holding time on extraction performance, and (3) assess the impact of AMD pretreatment (e.g., filtration and pH adjustment) on REE recovery. The results showed that relative extraction fluxes of REE correlated with AMD characteristics such as pH and major ions such as Fe, Ca, and Mn. The purity of the acid strippant product, expressed as the REE dry weight content, depended on the initial REE concentrations in the AMD source rather than the flux of individual REEs across the membrane. For AMD samples stored for 3 months prior to extraction, REE recovery by SLM separations was substantially decreased if oxidation of Fe(II) to Fe(III) was observed during sample storage. Pretreatment of AMD feedstocks by pH adjustment did not substantially improve the separation performance. Overall, this study establishes primary water quality parameters of AMD that influence the SLM separation flux and product purity. Such insights contribute to a mechanistic understanding of critical metals extractions by SLM for complex and nontraditional feedstocks such as AMD wastes.


Asunto(s)
Compuestos Férricos , Metales de Tierras Raras , Minería , Solventes , Iones
3.
Environ Sci Technol ; 58(3): 1709-1720, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38181227

RESUMEN

Mercury (Hg)-impaired aquatic ecosystems often receive multiple inputs of different Hg species with varying potentials for transformation and bioaccumulation. Over time, these distinct input pools of Hg homogenize in their relative distributions and bioaccumulation potentials as a result of biogeochemical processes and other aging processes within the ecosystem. This study sought to evaluate the relative time scale for homogenization of multiple Hg inputs to wetlands, information that is relevant for ecosystem management strategies that consider Hg source apportionment. We performed experiments in simulated freshwater wetland mesocosms that were dosed with four isotopically labeled mercury forms: two dissolved forms (Hg2+ and Hg-humic acid) and two particulate forms (nano-HgS and Hg adsorbed to FeS). Over the course of one year, we monitored the four Hg isotope endmembers for their relative distribution between surface water, sediment, and fish in the mesocosms, partitioning between soluble and particulate forms, and conversion to methylated mercury (MeHg). We also evaluated the reactivity and mobility of Hg through sequential selective extractions of sediment and the uptake flux of aqueous Hg in a diffusive gradient in thin-film (DGT) passive samplers. We observed that the four isotope spikes were relatively similar in surface water concentration (ca. 3000 ng/L) immediately after spike addition. At 1-3 months after dosing, Hg concentrations were 1-50 ng/L and were greater for the initially dissolved isotope endmembers than the initially particulate endmembers. In contrast, the Hg isotope endmembers in surface sediments were similar in relative concentration within 2 months after spike addition. However, the uptake fluxes of Hg in DGT samplers, deployed in both the water column and surface sediment, were generally greater for initially dissolved Hg endmembers and lower for initially particulate endmembers. At one year postdosing, the DGT-uptake fluxes were converging toward similar values between the Hg isotope endmembers. However, the relative distribution of isotope endmembers was still significantly different in both the water column and sediment (p < 0.01 according to one-way ANOVA analysis). In contrast, selective sequential extractions resulted in a homogeneous distribution, with >90% of each endmember extracted in the KOH fraction, suggesting that Hg species were associated with sediment organic matter. For MeHg concentrations in surface sediment and fish, the relative contributions from each endmember were significantly different at all sampling time points. Altogether, these results provide insights into the time scales of distribution for different Hg species that enter a wetland ecosystem. While these inputs attain homogeneity in concentration in primary storage compartments (i.e., sediments) within weeks after addition, these input pools remain differentiated for more than one year in terms of reactivity for passive samplers, MeHg concentration, and bioaccumulation.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Contaminantes Químicos del Agua , Animales , Mercurio/análisis , Compuestos de Metilmercurio/análisis , Humedales , Ecosistema , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Sedimentos Geológicos/análisis , Agua Dulce , Peces , Agua , Isótopos/análisis
4.
Environ Sci Technol ; 57(33): 12388-12397, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37561589

RESUMEN

Liquid elemental mercury (Hg0L) pollution can remain in soils for decades and, over time, will undergo corrosion, a process in which the droplet surface oxidizes soil constituents to form more reactive phases, such as mercury oxide (HgO). While these reactive coatings may enhance Hg migration in the subsurface, little is known about the transformation potential of corroded Hg0L in the presence of reduced inorganic sulfur species to form sparingly soluble HgS particles, a process that enables the long-term sequestration of mercury in soils and generally reduces its mobility and bioavailability. In this study, we investigated the dissolution of corroded Hg0L in the presence of sulfide by quantifying rates of aqueous Hg release from corroded Hg0L droplets under different sulfide concentrations (expressed as the S:Hg molar ratio). For droplets corroded in ambient air, no differences in soluble Hg release were observed among all sulfide exposure levels (S:Hg mole ratios ranging from 10-4 to 10). However, for droplets oxidized in the presence of a more reactive oxidant (hydrogen peroxide, H2O2), we observed a 10- to 25-fold increase in dissolved Hg when the oxidized droplets were exposed to low sulfide concentrations (S:Hg ratios from 10-4 to 10-1) relative to droplets exposed to high sulfide concentrations. These results suggest two critical factors that dictate the release of soluble Hg from Hg0L in the presence of sulfide: the extent of surface corrosion of the Hg0L droplet and sufficient sulfide concentration for the formation of HgS solids. The mobilization of Hg0L in porous media, therefore, largely depends on aging conditions in the subsurface and chemical reactivity at the Hg0L droplet interface.


Asunto(s)
Mercurio , Mercurio/análisis , Solubilidad , Peróxido de Hidrógeno , Sulfuros , Suelo
5.
Environ Sci Technol ; 56(3): 1743-1752, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35044747

RESUMEN

Mercury is a risk in aquatic ecosystems when the metal is converted to methylmercury (MeHg) and subsequently bioaccumulates in aquatic food webs. This risk can be difficult to manage because of the complexity of biogeochemical processes for mercury and the need for accessible techniques to navigate this complexity. Here, we explored the use of diffusive gradient in thin-film (DGT) passive samplers as a tool to simultaneously quantify the methylation potential of inorganic Hg (IHg) and the bioaccumulation potential of MeHg in freshwater wetlands. Outdoor freshwater wetland mesocosms were amended with four isotopically labeled and geochemically relevant IHg forms that represent a range of methylation potentials (202Hg2+, 201Hg-humic acid, 199Hg-sorbed to FeS, and 200HgS nanoparticles). Six weeks after the spikes, we deployed DGT samplers in the mesocosm water and sediments, evaluated DGT-uptake rates of total Hg, MeHg, and IHg (calculated by difference) for the Hg isotope spikes, and examined correlations with total Hg, MeHg, and IHg concentrations in sediment, water, and micro and macrofauna in the ecosystem. In the sediments, we observed greater relative MeHg concentrations from the initially dissolved IHg isotope spikes and lower MeHg levels from the initially particulate IHg spikes. These trends were consistent with uptake flux of IHg into DGTs deployed in surface sediments. Moreover, we observed correlations between total Hg-DGT uptake flux and MeHg levels in periphyton biofilms, submergent plant stems, snails, and mosquitofish in the ecosystem. These correlations were better for DGTs deployed in the water column compared to DGTs in the sediments, suggesting the importance of vertical distribution of bioavailable MeHg in relation to food sources for macrofauna. Overall, these results demonstrate that DGT passive samplers are a relatively simple and efficient tool for predicting IHg methylation and MeHg bioaccumulation potentials without the need to explicitly delineate IHg and MeHg speciation and partitioning in complex ecosystems.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Contaminantes Químicos del Agua , Bioacumulación , Ecosistema , Monitoreo del Ambiente/métodos , Agua Dulce , Mercurio/análisis , Metilación , Agua , Contaminantes Químicos del Agua/análisis , Humedales
6.
Environ Sci Technol ; 56(2): 1113-1124, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-35038872

RESUMEN

Silver nanoparticles (AgNPs) are extensively used in consumer products and biomedical applications, thus guaranteeing both environmental and human exposures. Despite extensive research addressing AgNP safety, there are still major knowledge gaps regarding AgNP toxicity mechanisms, particularly in whole organisms. Mitochondrial dysfunction is frequently described as an important cytotoxicity mechanism for AgNPs; however, it is still unclear if mitochondria are the direct targets of AgNPs. To test this, we exposed the nematodeCaenorhabditis elegans to sublethal concentrations of AgNPs and assessed specific mitochondrial parameters as well as organismal-level endpoints that are highly reliant on mitochondrial function, such as development and chemotaxis behavior. All AgNPs tested significantly delayed nematode development, disrupted mitochondrial bioenergetics, and blocked chemotaxis. However, silver was not preferentially accumulated in mitochondria, indicating that these effects are likely not due to direct mitochondria-AgNP interactions. Mutant nematodes with deficiencies in mitochondrial dynamics displayed both greater and decreased susceptibility to AgNPs compared to wild-type nematodes, which was dependent on the assay and AgNP type. Our study suggests that AgNPs indirectly promote mitochondrial dysfunction, leading to adverse outcomes at the organismal level, and reveals a role of gene-environment interactions in the susceptibility to AgNPs. Finally, we propose a novel hypothetical adverse outcome pathway for AgNP effects to guide future research.


Asunto(s)
Nanopartículas del Metal , Plata , Humanos , Nanopartículas del Metal/toxicidad , Mitocondrias/metabolismo , Dinámicas Mitocondriales , Plata/farmacología
7.
Environ Sci Technol ; 55(9): 6320-6328, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33797230

RESUMEN

Scandium (Sc) has great potential for use in aerospace and clean energy applications, but its supply is currently limited by a lack of commercially viable deposits and the environmental burden of its production. In this work, a biosorption-based flow-through process was developed for extraction of Sc from low-grade feedstocks. A microbe-encapsulated silica gel (MESG) biosorbent was synthesized through sol-gel encapsulation of Arthrobacter nicotianae, a bacterium that selectively adsorbs Sc. Microscopic imaging revealed a high cell loading and macroporous structure, which enabled rapid mass transport and adsorption/desorption of metal ions. The biosorbent displayed high Sc selectivity against lanthanides and major base metals, with the exception of Fe(III). Following pH adjustment to remove Fe(III) from an acid leachate prepared from lignite coal, a packed-bed column loaded with the MESG biosorbent exhibited near-complete Sc separation from lanthanides; the column eluate had a Sc enrichment factor of 10.9, with Sc constituting 96.4% of the total rare earth elements. The MESG biosorbent exhibited no significant degradation with regard to both adsorption capacity and physical structure after 10 adsorption/desorption cycles. Overall, our results suggest that the MESG biosorbent offers an effective and green alternative to conventional liquid-liquid extraction for Sc recovery.


Asunto(s)
Carbón Mineral , Contaminantes Químicos del Agua , Adsorción , Compuestos Férricos , Concentración de Iones de Hidrógeno , Cinética , Micrococcaceae , Escandio , Gel de Sílice
8.
Environ Sci Technol ; 2021 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-34346225

RESUMEN

Silver nanoparticles (AgNPs) are well-proven antimicrobial nanomaterials, yet little is elucidated regarding the mechanism underlying cytotoxicity induced by these nanoparticles. Here, we tested the hypothesis that mitochondria are primary intracellular targets of two AgNPs and silver ions in mouse hepatocytes (AML12) cultured in glucose- and galactose-based media. AML12 cells were more sensitive to mitochondrial uncoupling when grown with galactose rather than glucose. However, 24 h treatments with 15 nm AgNPs and 6 nm GA-AgNPs (5 and 10 µg/mL) and AgNO3 (1 and 3 µg/mL), concentrations that resulted in either 10 or 30% cytotoxicity, failed to cause more toxicity to AML12 cells grown on galactose than glucose. Furthermore, colocalization analysis and subcellular Ag quantification did not show any enrichment of silver content in mitochondria in either medium. Finally, the effects of the same exposures on mitochondrial respiration were mild or undetectable, a result inconsistent with mitochondrial toxicity causing cell death. Our results suggest that neither ionic Ag nor the AgNPs that we tested specifically target mitochondria and are inconsistent with mitochondrial dysfunction being the primary cause of cell death after Ag exposure under these conditions.

9.
Environ Sci Technol ; 54(1): 286-296, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31825606

RESUMEN

Artisanal and small-scale gold mining (ASGM) is a significant contributor of mercury (Hg) contamination and deforestation across the globe. In the Colorado River watershed in Madre de Dios, Peru, mining and deforestation have increased exponentially since the 1980s, resulting in major socioeconomic shifts in the region and two national state of emergency (2016 and 2019) in response to concerns for wide-scale mercury poisoning by these activities. This research employed a watershed-scale soil particle detachment model and environmental field sampling to estimate the role of land cover change and soil erosion on river transport of Hg in a heavily ASGM-impacted watershed. The model estimated that observed decreases in forest cover increased soil mobilization by a factor of two in the Colorado River watershed during the 18 year period and by 4-fold in the Puquiri subwatershed (the area of most concentrated ASGM activity). If deforestation continues to increase at its current exponential rate through 2030, the annual mobilization of soil and Hg may increase by an additional 20-25% relative to 2014 levels. While, the estimated total mass of Hg transported by rivers is substantially less than the estimated tons of Hg used with ASGM in Peru, this research shows that deforestation associated with ASGM is an additional mechanism for mobilizing naturally occurring and anthropogenic Hg from terrestrial landscapes to aquatic environments in the region, potentially leading to bioaccumulation in fish and exposure to communities downstream.


Asunto(s)
Mercurio , Contaminantes Químicos del Agua , Animales , Conservación de los Recursos Naturales , Monitoreo del Ambiente , Oro , Minería , Perú , Suelo
10.
Environ Sci Technol ; 54(3): 1533-1544, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-31951397

RESUMEN

Reliable predictions of the environmental fate and risk of engineered nanomaterials (ENMs) require a better understanding of ENM reactivity in complex, biologically active systems for chronic low-concentration exposure scenarios. Here, simulated freshwater wetland mesocosms were dosed with ENMs to assess how their reactivity and seasonal changes in environmental parameters influence ENM fate in aquatic systems. Copper-based ENMs (Kocide), known to dissolve in water, and gold nanoparticles (AuNPs), stable against dissolution in the absence of specific ligands, were added weekly to mesocosm waters for 9 months. Metal accumulation and speciation changes in the different environmental compartments were assessed over time. Copper from Kocide rapidly dissolved likely associating with organic matter in the water column, transported to terrestrial soils and deeper sediment where it became associated with organic or sulfide phases. In contrast, Au accumulated on/in the macrophytes where it oxidized and transferred over time to surficial sediment. A dynamic seasonal accumulation and metal redox cycling were found between the macrophyte and the surficial sediment for AuNPs. These results demonstrate the need for experimental quantification of how the biological and chemical complexity of the environment, combined with their seasonal variations, drive the fate of metastable ENMs.


Asunto(s)
Nanopartículas del Metal , Nanoestructuras , Cobre , Agua Dulce , Oro , Estaciones del Año , Humedales
11.
Environ Res ; 183: 108720, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31627842

RESUMEN

BACKGROUND: Mercury exposure related to artisanal and small-scale gold mining (ASGM) has raised environmental and public health concerns globally. Exposure to mercury, a potent neurotoxin that bioaccumulates in fish, is especially of concern to women of childbearing age (WCBA) and children in high-fish consuming populations. In Madre de Dios (MDD), Peru, an Amazon region with naturally occurring mercury and high ASGM activity, there is significant exposure concern among the mainly riverine, fish-consuming communities. The objective of this study was to conduct the first assessment of mercury exposure in a population-based sample of MDD, identify factors associated with elevated levels and compare the relationship between fish consumption and hair total mercury (H-THg) among persons living in ASGM affected and non-ASGM affected watersheds. METHODS: Hair samples and household demographic surveys, including a module on fish consumption, were collected from 723 participants across 46 communities within 10 km of the Interoceanic Highway in MDD, who were previously enrolled in the first population-based study in MDD spanning areas affected and unaffected by ASGM. H-THg concentration (natural log transformed) was evaluated for association with independent demographic variables through multilevel multivariate regression models accounting for clustering among households and communities. Samples from canned fish available at local stores were also tested for total mercury. RESULTS: Fish consumption (diversity and total consumed) varied spatially along the highway. 269 participants (37.2%) had elevated H-THg (>2.2 µg/g; median 1.60 µg/g; mean 2.24 µg/g), including 42.7% of WCBA and 20.0% of children under 5. Overall, H-THg was higher among people living in ASGM-affected areas. H-THg concentrations were strongly associated with fish consumption; however, in the multivariate models, household consumption of high trophic level fish was associated with elevated H-THg only in communities located in the ASGM-impacted watersheds. Similarly, the relationship between living in a household engaged in economic activities of fishing or Brazil nut harvesting was associated with higher H-THg, but only among households in the ASGM-affected area. In the non-ASGM affected areas, we observed a positive relationship between household daily fruit consumption and H-THg that was not observed in ASGM-affected areas. CONCLUSION: Diet, residential location, and occupation are strong predictors of mercury exposure in Madre de Dios, Peru. Canned fish may represent a previously overlooked source of dietary Hg exposure in the region. In accordance with the Minamata Convention on Mercury, the significant environmental health concern of mercury exposure in ASGM areas demands policy and programmatic attention.


Asunto(s)
Exposición Dietética , Peces , Contaminación de Alimentos , Mercurio , Adulto , Animales , Niño , Exposición a Riesgos Ambientales , Monitoreo del Ambiente , Femenino , Humanos , Minería , Perú , Alimentos Marinos
12.
Environ Sci Technol ; 53(13): 7391-7399, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31173690

RESUMEN

The potential for inorganic mercury (Hg) to be converted to methylmercury depends, in part, on the chemical form of Hg and its bioavailability to anaerobic microorganisms that can methylate Hg. In anaerobic settings, Hg can be associated with sulfide phases, including ferrous iron sulfide (FeS), which can sorb or be coprecipitated with Hg. The objective of this study was to determine if the aging state of FeS alters the Hg coordination environment as well as the reactivity and bioavailability of sorbed and coprecipitated Hg species. FeS particles were synthesized with and without Hg2+ and aged in anaerobic conditions for multiple time frames spanning from 1 h to 1 month. For FeS particles synthesized without Hg, Hg2+ was subsequently sorbed to the FeS for 1 day. Analysis of Hg speciation of these materials by X-ray absorption near edge spectroscopy revealed a predominance of four-coordinate Hg-S species in the sorbed Hg-FeS solids and a mixture of two- and four-coordinate Hg-S in the coprecipitated Hg-FeS. The leaching potential of the Hg was assessed by exposing the particles to a solution of dissolved glutathione (a thiolate-based Hg chelator). As expected, the sorbed Hg-FeS released more soluble Hg compared to the coprecipitated Hg-FeS. However, when these particles were exposed to Desulfovibrio desulfuricans ND132 (a known Hg methylator), more Hg was methylated from the coprecipitated Hg-FeS than the sorbed Hg-FeS, consistent with expectations from the Hg-S coordination state and inconsistent with the selective leaching results. Overall, these results suggest that the bioavailability of particulate Hg cannot be easily discerned by its leaching potential into bulk solution. Rather, bioavailability entails more subtle interactions at particle-cell interfaces and perhaps correlates with the local Hg-S coordination state in the particles.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Disponibilidad Biológica , Hierro , Sulfuros
13.
Environ Sci Technol ; 53(8): 4490-4499, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30907587

RESUMEN

Coal combustion residues and other geological waste materials have been proposed as a resource for rare earth elements (REEs, herein defined as the 14 stable lanthanides, yttrium, and scandium). The extraction of REEs from residues often generate acidified leachates that require highly selective separation methods to recover the REEs from other major soluble ions in the leachates. Here, we studied two liquid membrane processes (liquid emulsion membranes, LEM, and supported liquid membranes, SLM) and compared them to standard solvent extraction techniques for selective recovery and concentration of REEs from a leachate of coal fly ash. All separation methods involved an organic solution of di(2-ethylhexyl)phosphoric acid dissolved in kerosene or mineral oil and an acid strippant solution of 5 M nitric acid for the liquid-based separations. The LEM configuration, which separated REEs by immersing an acid-in-oil emulsion in the ash leachate, resulted in similar recovery percentages of individual REEs as the conventional solvent extraction approach. The recovery of REEs in the SLM configuration, which involved the impregnation of the solvent in a hydrophobic membrane, was slower than the LEM process. However, the SLM process was notably more selective for the heavy (and higher value) REEs, while the conventional extraction and LEM processes were more selective for the light REEs. A flux-based model of the extraction processes suggested that recovery rates were limited by REE affinity for the solvent chelator in the SLM, while the rates of REEs separation via LEM were limited by diffusive mass transfer across the liquid membrane. Altogether, these results help to identify specific steps in the recovery process that future work should target in the development of scalable liquid membrane separations for REE recovery.


Asunto(s)
Elementos de la Serie de los Lantanoides , Metales de Tierras Raras , Carbón Mineral , Ceniza del Carbón , Itrio
14.
Ecotoxicology ; 28(9): 1126-1135, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31620948

RESUMEN

Sites along the Elizabeth River are contaminated with polycyclic aromatic hydrocarbons (PAHs) from historical creosote production and other industrial processes. Previous studies have demonstrated that Atlantic killifish collected from sites throughout the Elizabeth River display resistance to the teratogenic effects of PAH-exposure in a manner commensurate with sediment PAH concentrations. The current study characterized various chemical pollutants in sediment and investigated the effects of aqueous sediment extracts from sites along the Elizabeth River to the cardiac development of Atlantic killifish embryos from fish collected from an uncontaminated reference site. Embryonic cardiac deformities were more prevalent after exposure to extracts from sites with high PAH loads. However, activation of cytochrome P4501A, a gene up-regulated by PAH-induction of the aryl hydrocarbon receptor and measured using an in ovo EROD assay, did not consistently increase with PAH concentrations. This work further characterizes sediments in the Elizabeth River, as well as provides insight into the evolutionary pressures at each ER site.


Asunto(s)
Fundulidae/fisiología , Sedimentos Geológicos/química , Hidrocarburos Policíclicos Aromáticos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Embrión no Mamífero/efectos de los fármacos , Metales/toxicidad , Bifenilos Policlorados/toxicidad , Ríos , Virginia
15.
Environ Sci Technol ; 52(15): 8521-8529, 2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-29920204

RESUMEN

Mercury-contaminated sediment and water contain various Hg species, with a small fraction available for microbial conversion to the bioaccumulative neurotoxin monomethylmercury (MeHg). Quantification of this available Hg pool is needed to prioritize sites for risk management. This study compared the efficacy of diffusive gradient in thin-film (DGT) passive samplers to a thiol-based selective extraction method with glutathione (GSH) and conventional filtration (<0.2 µm) as indicators of Hg bioavailability. Anaerobic sediment slurry microcosms were amended with isotopically labeled inorganic Hg "endmembers" (dissolved Hg2+, Hg-humic acid, Hg-sorbed to FeS, HgS nanoparticles) with a known range of bioavailability and methylation potentials. Net MeHg production (expressed as percent of total Hg as MeHg) over 1 week correlated with mass accumulation of Hg endmembers on the DGTs and only sometimes correlated with the 0.2 µm filter passing Hg fraction and the GSH-extractable Hg fraction. These results suggest for the first time that inorganic Hg uptake in DGTs may indicate bioavailability for methylating microbes. Moreover, the methylating microbial community assessed by hgcA gene abundance was not always consistent with methylation rates between the experiments, indicating that knowledge of the methylating community should target the transcript or protein level. Altogether, these results suggest that DGTs could be used to quantify the bioavailable Hg fraction as part of a method to assess net MeHg production potential in the environment.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Contaminantes Químicos del Agua , Disponibilidad Biológica , Sedimentos Geológicos , Metilación
16.
Environ Sci Technol ; 52(3): 1655-1664, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29224346

RESUMEN

Petroleum, natural gas, and natural gas condensate can contain low levels of mercury (Hg). The speciation of Hg can affect its behavior during processing, transport, and storage so efficient and safe management of Hg requires an understanding of its chemical form in oil, gas and byproducts. Here, X-ray absorption spectroscopy was used to determine the Hg speciation in samples of solid residues collected throughout the petroleum value chain including stabilized crude oil residues, sediments from separation tanks and condensate glycol dehydrators, distillation column pipe scale, and biosludge from wastewater treatment. In all samples except glycol dehydrators, metacinnabar (ß-HgS) was the primary form of Hg. Electron microscopy on particles from a crude sediment showed nanosized (<100 nm) particles forming larger aggregates, and confirmed the colocalization of Hg and sulfur. In sediments from glycol dehydrators, organic Hg(SR)2 accounted for ∼60% of the Hg, with ∼20% present as ß-HgS and/or Hg(SR)4 species. ß-HgS was the predominant Hg species in refinery biosludge and pipe scale samples. However, the balance of Hg species present in these samples depended on the nature of the crude oil being processed, i.e. sweet (low sulfur crudes) vs sour (higher sulfur crudes). This information on Hg speciation in the petroleum value chain will inform development of better engineering controls and management practices for Hg.


Asunto(s)
Mercurio , Petróleo , Azufre , Espectroscopía de Absorción de Rayos X
17.
Environ Sci Technol ; 52(17): 9556-9561, 2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-30067020

RESUMEN

Mercury is a global pollutant released into the biosphere by varied human activities including coal combustion, mining, artisanal gold mining, cement production, and chemical production. Once released to air, land and water, the addition of carbon atoms to mercury by bacteria results in the production of methylmercury, the toxic form that bioaccumulates in aquatic and terrestrial food chains resulting in elevated exposure to humans and wildlife. Global recognition of the mercury contamination problem has resulted in the Minamata Convention on Mercury, which came into force in 2017. The treaty aims to protect human health and the environment from human-generated releases of mercury curtailing its movement and transformations in the biosphere. Coincident with the treaty's coming into force, the 13th International Conference of Mercury as a Global Pollutant (ICMGP-13) was held in Providence, Rhode Island USA. At ICMGP-13, cutting edge research was summarized and presented to address questions relating to global and regional sources and cycling of mercury, how that mercury is methylated, the effects of mercury exposure on humans and wildlife, and the science needed for successful implementation of the Minamata Convention. Human activities have the potential to enhance mercury methylation by remobilizing previously released mercury, and increasing methylation efficiency. This synthesis concluded that many of the most important factors influencing the fate and effects of mercury and its more toxic form, methylmercury, stem from environmental changes that are much broader in scope than mercury releases alone. Alterations of mercury cycling, methylmercury bioavailability and trophic transfer due to climate and land use changes remain critical uncertainties in effective implementation of the Minamata Convention. In the face of these uncertainties, important policy and management actions are needed over the short-term to support the control of mercury releases to land, water and air. These include adequate monitoring and communication on risk from exposure to various forms of inorganic mercury as well as methylmercury from fish and rice consumption. Successful management of global and local mercury pollution will require integration of mercury research and policy in a changing world.


Asunto(s)
Contaminantes Ambientales , Mercurio , Compuestos de Metilmercurio , Animales , Contaminación Ambiental , Humanos , Rhode Island
18.
Environ Sci Technol ; 52(17): 9768-9776, 2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-30067347

RESUMEN

Trace metals associated with nanoparticles are known to possess reactivities that are different from their larger-size counterparts. However, the relative importance of small relative to large particles for the overall distribution and biouptake of these metals is not as well studied in complex environmental systems. Here, we have examined differences in the long term fate and transport of ceria (CeO2) nanoparticles of two different sizes (3.8 vs 185 nm), dosed weekly to freshwater wetland mesocosms over 9 months. While the majority of CeO2 particles were detected in soils and sediments at the end of nine months, there were significant differences observed in fate, distribution, and transport mechanisms between the two materials. Small nanoparticles were removed from the water column primarily through heteroaggregation with suspended solids and plants, while large nanoparticles were removed primarily by sedimentation. A greater fraction of small particles remained in the upper floc layers of sediment relative to the large particles (31% vs 7%). Cerium from the small particles were also significantly more bioavailable to aquatic plants (2% vs 0.5%), snails (44 vs 2.6 ng), and insects (8 vs 0.07 µg). Small CeO2 particles were also significantly reduced from Ce(IV) to Ce(III), while aquatic sediments were a sink for untransformed large nanoparticles. These results demonstrate that trace metals originating from nanoscale materials have much greater potential than their larger counterparts to distribute throughout multiple compartments of a complex aquatic ecosystem and contribute to the overall bioavailable pool of the metal for biouptake and trophic transfer.


Asunto(s)
Cerio , Nanopartículas del Metal , Nanopartículas , Animales , Ecosistema , Agua Dulce , Humedales
19.
Environ Eng Sci ; 35(7): 728-738, 2018 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-29983540

RESUMEN

The chemical composition of coal ash is highly heterogeneous and dependent on the origin of the source coal, combustion parameters, and type and configuration of air pollution control devices. This heterogeneity results in uncertainty in the evaluation of leaching potential of contaminants from coal ash. The goal of this work was to identify whether a single leaching protocol could roughly group high-leaching potential coal ash from low-leaching potential coal ash, with respect to arsenic (As) and selenium (Se). We used four different leaching tests, including the Toxicity Characteristic Leaching Protocol (TCLP), natural pH, aerobic sediment microcosms, and anaerobic sediment microcosms on 10 different coal ash materials, including fly ash, lime-treated ash, and flue gas desulfurization materials. Leaching tests showed promise in categorizing high and low-leaching potential ash materials, indicating that a single point test could act as a first screening measure to identify high-risk ash materials. However, the amount of contaminant leached varied widely across tests, reflecting the importance of ambient conditions (pH, redox state) on leaching. These results demonstrate that on-site geochemical conditions play a critical role in As and Se mobilization from coal ash, underscoring the need to develop a situation-based risk assessment framework for contamination by coal ash pollutants.

20.
Environ Sci Technol ; 51(3): 1395-1404, 2017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-28081364

RESUMEN

The toxicity of soluble metal-based nanomaterials may be due to the uptake of metals in both dissolved and nanoparticulate forms, but the relative contributions of these different forms to overall metal uptake rates under environmental conditions are not quantitatively defined. Here, we investigated the linkage between the dissolution rates of copper(II) oxide (CuO) nanoparticles (NPs) and their bioavailability to Gulf killifish (Fundulus grandis) embryos, with the aim of quantitatively delineating the relative contributions of nanoparticulate and dissolved species for Cu uptake. Gulf killifish embryos were exposed to dissolved Cu and CuO NP mixtures comprising a range of pH values (6.3-7.5) and three types of natural organic matter (NOM) isolates at various concentrations (0.1-10 mg-C L-1), resulting in a wide range of CuO NP dissolution rates that subsequently influenced Cu uptake. First-order dissolution rate constants of CuO NPs increased with increasing NOM concentration and for NOM isolates with higher aromaticity, as indicated by specific ultraviolet absorbance (SUVA), while Cu uptake rate constants of both dissolved Cu and CuO NP decreased with NOM concentration and aromaticity. As a result, the relative contribution of dissolved Cu and nanoparticulate CuO species for the overall Cu uptake rate was insensitive to NOM type or concentration but largely determined by the percentage of CuO that dissolved. These findings highlight SUVA and aromaticity as key NOM properties affecting the dissolution kinetics and bioavailability of soluble metal-based nanomaterials in organic-rich waters. These properties could be used in the incorporation of dissolution kinetics into predictive models for environmental risks of nanomaterials.


Asunto(s)
Cobre/química , Fundulidae , Animales , Cinética , Nanopartículas del Metal/química , Contaminantes Químicos del Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA