Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 23(23): 11051-11056, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38088140

RESUMEN

Terahertz (THz) field enhancement has significant applications in high-resolution imaging, next-generation wireless communications, and networking. In this work, we experimentally demonstrate a graphene metasurface for THz field enhancement that is based on the intervalley scattering theory. Each meta-atom of the metasurface is composed of one split-ring resonator (SRR) embedded in one graphene patch. The experimental results show that, by electrically adjusting the conductivity of the graphene patch, the THz field through the entire sample is enhanced by 23 times and the transmission amplitude at 0.47 THz decreases 8.4 dB. Moreover, the maximum phase difference at 0.43 THz reaches 88°. The experiment shows good agreement with simulation. This study paves a way for exploring THz-matter interactions and nonlinear optics.

2.
Opt Lett ; 48(18): 4781-4784, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37707901

RESUMEN

Slow light devices have significant applications in memory, switching, and quantum optics. However, the design and fabrication of slow light devices with large tunable group delay are still challenging. Here, a graphene-based slow light device that can electrically modulate the group delay of terahertz (THz) waves is proposed and experimentally demonstrated. The unit cell of the device consists of a U-shaped metal resonator and an Ω-shaped metal resonator, with three graphene ribbons embedded between the two resonators. Under electrical stimuli, a relatively high amplitude modulation depth of 74% is achieved and the maximum transmission amplitude is as high as 0.7 at the transmission peak of 0.6 THz. Most importantly, the maximum group delay variation reaches 5 ps at 0.76 THz and the maximum group delay amplitude is as high as 8.8 ps. The experiment shows good agreement with simulation. This study paves a new way for developing novel switchable nanophotonic devices and slow light devices.

3.
Appl Opt ; 62(4): 1027-1034, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36821160

RESUMEN

To achieve classification and concentration detection of cancer biomarkers, we propose a method that combines terahertz (THz) spectroscopy, metasurface sensors, and machine learning. A metasurface sensor suitable for biomarker detection was designed and fabricated with five resonance frequencies in the range of 0.3-0.9 THz. We collected biomarkers of five types and nine concentrations at 100 sets of time-domain spectra per concentration. The spectrum is processed by noise reduction and fast Fourier transform to obtain the frequency-domain spectrum. Five machine learning algorithms are used to analyze time- and frequency-domain spectra and ascertain which algorithm is more suitable for the classification of the biomarker THz spectrum. Experimental results show that random forest can better distinguish five biomarkers with an accuracy of 0.984 for the time-domain spectrum. For the frequency-domain spectrum, the support vector machine performs better, with an accuracy of 0.989. For biomarkers at different concentrations, we used linear regression to fit the relationship between biomarker concentration and frequency shift. Experimental results show that machine learning can distinguish different biomarker species and their concentrations by the THz spectrum. This work provides an idea and data processing method for the application of THz technology in biomedical detection.


Asunto(s)
Algoritmos , Espectroscopía de Terahertz , Espectroscopía de Terahertz/métodos , Aprendizaje Automático , Bosques Aleatorios , Biomarcadores
4.
Appl Opt ; 62(33): 8905-8910, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-38038036

RESUMEN

We propose a polarization insensitive, flexible ultra-broadband terahertz (THz) metamaterial absorber. It consists of a chromium composite resonator on the top, a polyimide (PI) dielectric layer in the middle, and a chromium substrate. The simulation results show that the absorption achieves more than 90% ultra-wideband absorption in the range of 1.92-4.34 THz. The broadband absorption is produced by the combination of electric dipole resonance and magnetic resonance, as well as impedance matching with free space. Due to the rotational symmetry of the unit structure, the absorber is insensitive to polarization of the THz wave and has a larger range of incident angles. The total thickness of the absorber is only 13.4 µm, showing highly flexible and excellent high-temperature resistance characteristics. Therefore, it has potential applications in THz wave stealth and electromagnetic shielding.

5.
Appl Opt ; 62(4): 1103-1108, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36821170

RESUMEN

Actively controlling the phase of a terahertz (THz) wave is of great significance for beaming, tunable focusing, and holography. We present a THz phase modulator based on an electrically triggered vanadium dioxide (V O 2) reconfigurable metasurface. The unit cell of the device consists of two split-ring resonators embedded with a V O 2 ribbon. By electrically triggering the insulator-to-metal transition of V O 2, the resonance mode and resonance intensity of the unit cell can be dynamically controlled. The simulation results show that the structure can achieve a phase shift of about 360° in the range of 1.03-1.13 THz, and the reflection amplitude can reach 80%. The device has potential applications in THz imaging, radar, broadband wireless communications, and array phase control.

6.
BMC Med Inform Decis Mak ; 23(1): 92, 2023 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-37165349

RESUMEN

BACKGROUND: Kidney tumors have become increasingly prevalent among adults and are now considered one of the most common types of tumors. Accurate segmentation of kidney tumors can help physicians assess tumor complexity and aggressiveness before surgery. However, segmenting kidney tumors manually can be difficult because of their heterogeneity. METHODS: This paper proposes a 2.5D MFFAU-Net (multi-level Feature Fusion Attention U-Net) to segment kidneys, tumors and cysts. First, we propose a 2.5D model for learning to combine and represent a given slice in 2D slices, thereby introducing 3D information to balance memory consumption and model complexity. Then, we propose a ResConv architecture in MFFAU-Net and use the high-level and low-level feature in the model. Finally, we use multi-level information to analyze the spatial features between slices to segment kidneys and tumors. RESULTS: The 2.5D MFFAU-Net was evaluated on KiTS19 and KiTS21 kidney datasets and demonstrated an average dice score of 0.924 and 0.875, respectively, and an average Surface dice (SD) score of 0.794 in KiTS21. CONCLUSION: The 2.5D MFFAU-Net model can effectively segment kidney tumors, and the results are comparable to those obtained with high-performance 3D CNN models, and have the potential to serve as a point of reference in clinical practice.


Asunto(s)
Neoplasias Renales , Médicos , Adulto , Humanos , Riñón/diagnóstico por imagen , Neoplasias Renales/diagnóstico por imagen , Redes Neurales de la Computación , Procesamiento de Imagen Asistido por Computador
7.
Langmuir ; 38(12): 3739-3747, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-35298154

RESUMEN

Owing to their stability in bodily fluids, exosomes have attracted increased attention as colorectal cancer (CRC) biomarkers for early diagnosis. To validate the potential of the plasma exosomes as a novel biomarker for the monitoring of CRC, we demonstrated a terahertz (THz) metamaterials (MMs) biosensor for the detection of exosomes in this work. The biosensor with two resonant frequencies is designed using full wave electromagnetic simulation software based on the finite integration time domain (FITD) method and fabricated by a surface micromachining process. The biosensor surface is first modified using Au nanoparticles (AuNPs), and then, anti-KRAS and anti-CD147, which are specific to the exosomes, are modified on the AuNPs assembled with HS-poly(ethylene glycol)-COOH (HS-PEG-COOH). Exosomes used in the experiment are extracted via the instructions in the exosomes isolation and purification kit and identified by using transmission electron microscopy (TEM), Western blot (WB), and nanoparticle tracking analysis (NTA). The biosensor covered with plasma-derived exosomes of CRC patients has a different resonance frequency shift compared to that with healthy-control-derived exosomes. This study proposes an emerging and quick method for diagnosing the CRC.


Asunto(s)
Técnicas Biosensibles , Exosomas , Nanopartículas del Metal , Biomarcadores , Técnicas Biosensibles/métodos , Oro , Humanos , Microscopía Electrónica de Transmisión
8.
Appl Opt ; 61(27): 7978-7984, 2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36255918

RESUMEN

A four-peak terahertz metamaterial sensor was used to detect the reaction between different concentrations of vitamin B6 (VB6) and bovine serum albumin (BSA), which achieves a concentration range (0.015-0.125 mg/µl) of VB6 and a maximum binding concentration (0.05 mg/µl) of VB6 and 0.0875 mg/µl BSA. To understand the combination of VB6 and BSA, the reactants between VB (VB1, VB3, and VB5) with the same concentration (0.05 mg/µl) and a BSA solution with a concentration of 0.0875 mg/µl were carried on the surface of the sensor. Experimental results show that the reactants cause the four resonance peaks of the sensor to produce the coincident redshift, which is the same as the order of their binding coefficients determined by the fluorescence method. The experimental process indicates that it is feasible to use terahertz metamaterials to detect the reaction process of organic matter.


Asunto(s)
Albúmina Sérica Bovina , Vitamina B 6 , Albúmina Sérica Bovina/metabolismo , Vitaminas
9.
Appl Opt ; 61(16): 4817-4822, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36255965

RESUMEN

We propose a method for diagnosis of cirrhosis and hepatocellular carcinoma (HCC) by using a terahertz (THz) metamaterial (MM) biosensor. The biosensor has a resonance frequency at about 0.801 THz and can measure the concentration of alpha-fetoprotein (AFP) in serum. The sensitivity of the sensor is 124 GHz/refractive index unit (RIU), and the quality-factor (Q) is 6.913, respectively. When the surface of the biosensor is covered with healthy serum (AFP≤7ng/mL), the maximum resonance frequency shift is 50 GHz. However, when it is covered with serum from patients with cirrhosis and early HCC (AFP>7ng/mL), the resonance frequency shift is more than 59 GHz. Positive correlation exists between the frequency shift of the biosensor and serum levels of the AFP in the HCC patients. This study provides a method for quick diagnosis and prediction of cirrhosis and HCC.


Asunto(s)
Técnicas Biosensibles , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/patología , alfa-Fetoproteínas , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/patología , Cirrosis Hepática , Biomarcadores de Tumor
10.
Opt Lett ; 46(6): 1309-1312, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33720174

RESUMEN

We propose a Babinet-invertible chiral metasurface for achieving dynamically reversible and strong circular dichroism (CD). The proposed metasurface is composed of a VO2-metal hybrid structure, and when VO2 transits between the dielectric state and the metallic state, the metasurface unit cell switches between complementary structures that are designed according to Babinet's principle. This leads to a large and reversible CD tuning range between ±0.5 at 0.97 THz, which is larger than the one found in the literature. We attribute the CD effect to extrinsic chirality of the proposed metasurface. We envision that the Babinet-invertible chiral metasurface proposed here will advance the engineering of active and tunable chiro-optical devices and promote their applications.

11.
Appl Opt ; 60(22): 6366-6370, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34612870

RESUMEN

We propose an ultra-broadband terahertz bandpass filter with dynamically tunable attenuation based on a graphene-metal hybrid metasurface. The metasurface unit cell is composed of two metal stripes enclosed with a graphene rectangular ring. Results show that when the metasurface is normally illuminated by a terahertz wave polarized along the metal stripes, it can act as an ultra-broadband bandpass filter over the spectral range from 1.49 THz to 4.05 THz, corresponding to a fractional bandwidth of 92%. Remarkably, high transmittance above 90% covering the range from 1.98 THz to 3.95 THz can be achieved. By changing the Fermi level of graphene, we find that the attenuation within the passband can be dynamically tuned from 2% to 66%. We expect that the proposed ultra-broadband terahertz bandpass filter with tunable attenuation will find applications in terahertz communication and detection and sensing systems.

12.
Opt Express ; 28(21): 30861-30870, 2020 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-33115078

RESUMEN

We propose a metal-vanadium dioxide (VO2) metamaterial with broadband and functionality-switchable polarization conversion in the terahertz regime. Simulation results show that the function of the proposed metamaterial can be switched from a half-wave plate (HWP) to a quarter-wave plate (QWP) over a broad bandwidth of 0.66-1.40 THz, corresponding to a relative bandwidth of 71.8%. The HWP obtained when VO2 is in the insulating state has reflection of 90% and linear polarization conversion ratio exceeding 98% over the bandwidth of 0.58-1.40 THz. By transiting the phase of VO2 into the conducting state, the obtained QWP can convert the incident linearly-polarized wave to circularly-polarized wave with an ellipticity of 0.99 over 0.66-1.60 THz. Additionally, results show that the proposed broadband switchable HWP/QWP has a large angular tolerance. We expect that this broadband and switchable multi-functional wave plate will find applications in polarization-dependent terahertz systems including sensing, imaging, and telecommunications.

13.
Opt Express ; 28(21): 30675-30685, 2020 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-33115063

RESUMEN

We propose a switchable broadband and wide-angular terahertz asymmetric transmission based on a spiral metasurface composed of metal and VO2 hybrid structures. Results show that asymmetric transmission reaching up to 15% can be switched on or off for circularly polarized terahertz waves when the phase of VO2 transits from the insulting state to the conducting state or reversely. Strikingly, we find that relatively high asymmetric transmission above 10% can be maintained over a broad bandwidth of 2.6-4.0 THz and also over a large incident angular range of 0°-45°. We further discover that as the incident angle increases, the dominant chirality of the proposed metasurface with VO2 in the conducting state can shift from intrinsic to extrinsic chirality. We expect this work will advance the engineering of switchable chiral metasurfaces and promote terahertz applications.

14.
Opt Lett ; 45(17): 4754-4757, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32870849

RESUMEN

A broadband and low-dispersion high refractive index (HRI) metamaterial formed by symmetrically etching two identical metasurfaces on both sides of a dielectric slab has been numerically and experimentally demonstrated in the terahertz region. The unit cell of the metasurface is a Jerusalem cross surrounded by a square metal ring, in which there are two magnetic resonances and one electric resonance. The proposed metamaterial simultaneously possesses high effective permittivity and permeability in broadband frequencies, since the multiple resonances result in a significant bandwidth expansion of a HRI. The simulation results reveal that the refractive index of the proposed metamaterial reaches up to 27 in the frequency range of 0.39-0.65 THz, and the relative bandwidth is about 44%. Furthermore, the fluctuation of the refractive index in this frequency band is less than 6%, showing a good low-dispersion characteristic. We also fabricated a sample to verify this HRI property. Experimental results are in good agreement with numerical simulations. This broadband HRI metamaterial is desirable in many fields, such as in high-resolution imaging and optical communications.

15.
Appl Opt ; 59(12): 3686-3691, 2020 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-32400491

RESUMEN

Chirality has received wide attention due to its promising applications in biopharmaceuticals, chemical detection, and polarized optoelectronic devices. Herein, metamaterials with layered Tai Chi patterns are proposed to get strong and tunable chirality. Based on the surface current distribution analysis, a coupling model considering both the magnetic and electric dipoles in the upper and bottom metallic structures is proposed to understand the circular dichroism. Accordingly, both an external chiral modulation by changing the incident angle and an internal chiral modulation by changing the twist angle are achieved. Incident-angle-dependent circular dichroism modulation exhibits a range of 0.44-0.62 and the twist-angle-dependent modulation range is ${-}{0.6 - 0.42}$-0.6-0.42, where the negative value means the polarity of the circular dichroism can also be tuned. This work deepens the understanding of angular-dependent chirality in metamaterials and expands the potential for terahertz polarization optoelectronic applications.

16.
Opt Express ; 27(13): 18085-18093, 2019 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-31252756

RESUMEN

We propose and experimentally demonstrate annular arrayed-Airy beams (AAABs) carrying vortex arrays by combining multiple beams. The propagation dynamics and abrupt autofocusing property are studied. The focal intensity can be greatly increased by two orders of magnitude by increasing vortex array number. Furthermore, the autofocusing property is also enhanced significantly. This tightly autofocusing property would be advantageous for the generation of high intensity laser, optical manipulation, medical treatments, and nonlinear effects.

17.
Opt Lett ; 44(8): 1968-1971, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-30985787

RESUMEN

We developed a generalized spectral phase superposition approach for generating accelerating optical beams along arbitrary trajectories. Such beams can be customized by predefining an appropriate superimposed phase pattern that consists of multiple sub-phases. We generated a spirally accelerating beam in a three-dimensional space and developed an algorithm to improve the uniformity of the intensity along the trajectory by introducing phase-shift factors. We also experimentally verified our numerical simulations. The proposed approach breaks the conventional convex trajectory restrictions. These various accelerating beams would pave the way for optically moving particles along a desired trajectory. The generation of such arbitrary accelerating beams is likely to give rise to new applications in flexible optical manipulation, wave front control, and optical transportation and guidance of particles.

18.
Org Biomol Chem ; 17(8): 2126-2133, 2019 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-30698586

RESUMEN

A novel efficient metal-free aminoiodination of alkenes with N-fluorobenzenesulfonimide (NFSI) through an iodonium intermediate under mild conditions with good regioselectivity and stereoselectivity is reported. Unlike transition-metal catalysed aminative bisfunctionalization with NFSI in which the oxidative addition of NFSI to transition-metals affords an electrophilic amino radical, the oxidation of anionic iodide by NFSI in situ generates an electrophilic iodine cation and an amino nucleophile to fulfil this efficient reaction. 2,2,6,6-Tetramethyl-piperidine-1-oxyl (TEMPO) could considerably promote this iodoamination at room temperature. A preliminary trial suggests that bromoamination could also be achieved under similar conditions.

19.
Opt Lett ; 43(1): 17-20, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-29328226

RESUMEN

We experimentally demonstrated a tunable terahertz bandpass filter based on microelectromechanical systems (MEMS) reconfigurable metamaterials. The unit cell of the filter consists of two split-ring resonators (SRRs) and a movable bar. Initially, the movable bar situates at the center of the unit cell, and the filter has two passbands whose central frequencies locate at 0.65 and 0.96 THz. The intensity of the two passbands can be actively modulated by the movable bar, and a maximum modulation depth of 96% is achieved at 0.96 THz. The mechanism of tunability is investigated using the finite-integration time-domain method. The result shows that the image currents induced on the movable bar are opposite the resonance currents induced on the SRRs and, thus, weaken the oscillating intensity of the resonance currents. This scheme paves the way to dynamically control and switch the terahertz wave at some constant frequencies utilizing induced image currents.

20.
Appl Opt ; 57(30): 9114-9122, 2018 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-30461911

RESUMEN

The constraints on directions of incoming and outgoing rays of Risley prisms, caused by total internal reflection and surface tilt, are investigated for the four typical configurations. After applying a nonparaxial ray-tracing method based on the vector form Snell's law, the incident angles at prisms' surfaces are calculated and compared with the critical angle. On this basis, the direction limitations of incoming and outgoing rays are investigated. The permissible incoming directions as well as the achievable outgoing directions depend on prisms' orientation. Their ranges over which the rays can pass through the system at any prism orientation are defined as the angular aperture and angular field of view (FOV). The effects of the prisms' refractive index, opening angle, and arrangement on angular aperture/FOV are discussed. It is shown that there exists a direct trade-off between the deviation power and the angular aperture/FOV for Risley prisms, that is, high refractive index and large opening angle yield a smaller angle aperture/FOV. Large angular aperture can be achieved by employing the 2121 configuration, while it is desirable to adopt a 1212 configuration to obtain large angular FOV. The research can afford guidance for prism material, geometry choices, and configuration setting in the design of a Risley prism system for wide-angle beam steering or imaging adjustment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA