Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Nano Lett ; 23(11): 4807-4814, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37224193

RESUMEN

Heterogeneities in structure and polarization have been employed to enhance the energy storage properties of ferroelectric films. The presence of nonpolar phases, however, weakens the net polarization. Here, we achieve a slush-like polar state with fine domains of different ferroelectric polar phases by narrowing the large combinatorial space of likely candidates using machine learning methods. The formation of the slush-like polar state at the nanoscale in cation-doped BaTiO3 films is simulated by phase field simulation and confirmed by aberration-corrected scanning transmission electron microscopy. The large polarization and the delayed polarization saturation lead to greatly enhanced energy density of 80 J/cm3 and transfer efficiency of 85% over a wide temperature range. Such a data-driven design recipe for a slush-like polar state is generally applicable to quickly optimize functionalities of ferroelectric materials.

2.
Phys Rev Lett ; 124(10): 107601, 2020 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-32216398

RESUMEN

Exploring the dynamic responses of a material is of importance to both understanding its fundamental physics at high frequencies and potential device applications. Here we develop a phase-field model for predicting the dynamics of ferroelectric materials and study the dynamic responses of ferroelectric domains and domain walls subjected to an ultrafast electric-field pulse. We discover a transition of domain evolution mechanisms from pure domain growth at a relatively low field to combined nucleation and growth of domains at a high field. We derive analytical models for the two regimes which allow us to extract the effective mass and damping coefficient of ferroelectric domain walls. The exhibition of two regimes for the ferroelectric domain dynamics at low and high electric fields is expected to be a general phenomenon that would appear for ferroic domains under other ultrafast stimuli. The present Letter also offers a general framework for studying domain dynamics and obtaining fundamental properties of domain walls and thus for manipulating the dynamic functionalities of ferroelectric materials.

3.
Nano Lett ; 16(4): 2341-8, 2016 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-27002341

RESUMEN

Magnetic domain-wall motion driven by a voltage dissipates much less heat than by a current, but none of the existing reports have achieved speeds exceeding 100 m/s. Here phase-field and finite-element simulations were combined to study the dynamics of strain-mediated voltage-driven magnetic domain-wall motion in curved nanowires. Using a ring-shaped, rough-edged magnetic nanowire on top of a piezoelectric disk, we demonstrate a fast voltage-driven magnetic domain-wall motion with average velocity up to 550 m/s, which is comparable to current-driven wall velocity. An analytical theory is derived to describe the strain dependence of average magnetic domain-wall velocity. Moreover, one 180° domain-wall cycle around the ring dissipates an ultrasmall amount of heat, as small as 0.2 fJ, approximately 3 orders of magnitude smaller than those in current-driven cases. These findings suggest a new route toward developing high-speed, low-power-dissipation domain-wall spintronics.

4.
Nano Lett ; 15(1): 616-22, 2015 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-25549019

RESUMEN

If achieved, magnetization reversal purely with an electric field has the potential to revolutionize the spintronic devices that currently utilize power-dissipating currents. However, all existing proposals involve the use of a magnetic field. Here we use phase-field simulations to study the piezoelectric and magnetoelectric responses in a three-dimensional multiferroic nanostructure consisting of a perpendicularly magnetized nanomagnet with an in-plane long axis and a juxtaposed ferroelectric nanoisland. For the first time, we demonstrate a full reversal of perpendicular magnetization via successive precession and damping, driven purely by a perpendicular electric-field pulse of certain pulse duration across the nanoferroelectric. We discuss the materials selection and size dependence of both nanoferroelctrics and nanomagnets for experimental verification. These results offer new inspiration to the design of spintronic devices that simultaneously possess high density, high thermal stability, and high reliability.

6.
Nat Commun ; 14(1): 5458, 2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37673896

RESUMEN

Current induced spin-orbit torque (SOT) holds great promise for next generation magnetic-memory technology. Field-free SOT switching of perpendicular magnetization requires the breaking of in-plane symmetry, which can be artificially introduced by external magnetic field, exchange coupling or device asymmetry. Recently it has been shown that the exploitation of inherent crystal symmetry offers a simple and potentially efficient route towards field-free switching. However, applying this approach to the benchmark SOT materials such as ferromagnets and heavy metals is challenging. Here, we present a strategy to break the in-plane symmetry of Pt/Co heterostructures by designing the orientation of Burgers vectors of dislocations. We show that the lattice of Pt/Co is tilted by about 1.2° when the Burgers vector has an out-of-plane component. Consequently, a tilted magnetic easy axis is induced and can be tuned from nearly in-plane to out-of-plane, enabling the field-free SOT switching of perpendicular magnetization components at room temperature with a relatively low current density (~1011 A/m2) and excellent stability (> 104 cycles). This strategy is expected to be applicable to engineer a wide range of symmetry-related functionalities for future electronic and magnetic devices.

7.
Nat Commun ; 14(1): 21, 2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36596763

RESUMEN

Self-assembled systems have recently attracted extensive attention because they can display a wide range of phase morphologies in nanocomposites, providing a new arena to explore novel phenomena. Among these morphologies, a bicontinuous structure is highly desirable based on its high interface-to-volume ratio and 3D interconnectivity. A bicontinuous nickel oxide (NiO) and tin dioxide (SnO2) heteroepitaxial nanocomposite is revealed here. By controlling their concentration, we fabricated tuneable self-assembled nanostructures from pillars to bicontinuous structures, as evidenced by TEM-energy-dispersive X-ray spectroscopy with a tortuous compositional distribution. The experimentally observed growth modes are consistent with predictions by first-principles calculations. Phase-field simulations are performed to understand 3D microstructure formation and extract key thermodynamic parameters for predicting microstructure morphologies in SnO2:NiO nanocomposites of other concentrations. Furthermore, we demonstrate significantly enhanced photovoltaic properties in a bicontinuous SnO2:NiO nanocomposite macroscopically and microscopically. This research shows a pathway to developing innovative solar cell and photodetector devices based on self-assembled oxides.

8.
Adv Sci (Weinh) ; 10(8): e2206203, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36703616

RESUMEN

The anomalous Hall effect (AHE) is a quantum coherent transport phenomenon that conventionally vanishes at elevated temperatures because of thermal dephasing. Therefore, it is puzzling that the AHE can survive in heavy metal (HM)/antiferromagnetic (AFM) insulator (AFMI) heterostructures at high temperatures yet disappears at low temperatures. In this paper, an unconventional high-temperature AHE in HM/AFMI is observed only around the Néel temperature of AFM, with large anomalous Hall resistivity up to 40 nΩ cm is reported. This mechanism is attributed to the emergence of a noncollinear AFM spin texture with a non-zero net topological charge. Atomistic spin dynamics simulation shows that such a unique spin texture can be stabilized by the subtle interplay among the collinear AFM exchange coupling, interfacial Dyzaloshinski-Moriya interaction, thermal fluctuation, and bias magnetic field.

9.
ACS Appl Mater Interfaces ; 14(19): 22278-22286, 2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35523210

RESUMEN

Relaxor ferroelectric-based energy storage systems are promising candidates for advanced applications as a result of their fast speed and high energy storage density. In the research field of ferroelectrics and relaxor ferroelectrics, the concept of solid solution is widely adopted to modify the overall properties and acquire superior performance. However, the combination between antiferroelectric and paraelectric materials was less studied and discussed. In this study, paraelectric barium hafnate (BaHfO3) and antiferroelectric lead hafnate (PbHfO3) are selected to demonstrate such a combination. A paraelectric to relaxor ferroelectric, to ferroelectric, and to antiferroelectric transition is observed by varying the composition x in the (Ba1-xPbx)HfO3 solid solution from 0 to 100%. It is noteworthy that ferroelectric phases can be realized without primal ferroelectric material. This study creates an original solid solution system with a rich spectrum of competing phases and demonstrates an approach to design relaxor ferroelectrics for energy storage applications and beyond.

10.
ACS Appl Mater Interfaces ; 13(41): 48997-49006, 2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34617721

RESUMEN

Narrowband terahertz (THz) radiation is crucial for high-resolution spectral identification, but a narrowband THz source driven by a femtosecond (fs) laser has remained scarce. Here, it is computationally predicted that a metal/dielectric/magnetoelastic heterostructure enables converting a fs laser pulse into a multicycle THz pulse with a narrow linewidth down to ∼1.5 GHz, which is in contrast to the single-cycle, broadband THz pulse from the existing fs-laser-excited emitters. It is shown that such narrowband THz pulse originates from the excitation and long-distance transport of THz spin waves in the magnetoelastic film, which can be enabled by a short strain pulse obtained from fs laser irradiation of the metal film when the thicknesses of the metal and magnetoelastic films both fall into a specific range. These results therefore reveal an approach to achieving optical generation of narrowband THz pulse based on heterostructure design, which also has implications in the design of THz magnonic devices.

11.
Nat Commun ; 12(1): 322, 2021 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-33436572

RESUMEN

Room-temperature skyrmions in magnetic multilayers are considered to be promising candidates for the next-generation spintronic devices. Several approaches have been developed to control skyrmions, but they either cause significant heat dissipation or require ultrahigh electric fields near the breakdown threshold. Here, we demonstrate electric-field control of skyrmions through strain-mediated magnetoelectric coupling in ferromagnetic/ferroelectric multiferroic heterostructures. We show the process of non-volatile creation of multiple skyrmions, reversible deformation and annihilation of a single skyrmion by performing magnetic force microscopy with in situ electric fields. Strain-induced changes in perpendicular magnetic anisotropy and interfacial Dzyaloshinskii-Moriya interaction strength are characterized experimentally. These experimental results, together with micromagnetic simulations, demonstrate that strain-mediated magnetoelectric coupling (via strain-induced changes in both the perpendicular magnetic anisotropy and interfacial Dzyaloshinskii-Moriya interaction is responsible for the observed electric-field control of skyrmions. Our work provides a platform to investigate electric-field control of skyrmions in multiferroic heterostructures and paves the way towards more energy-efficient skyrmion-based spintronics.

14.
ACS Appl Mater Interfaces ; 9(38): 33341-33350, 2017 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-28880071

RESUMEN

Modeling the effective ion conductivities of heterogeneous solid electrolytes typically involves the use of a computer-generated microstructure consisting of randomly or uniformly oriented fillers in a matrix. However, the structural features of the filler/matrix interface, which critically determine the interface ion conductivity and the microstructure morphology, have not been considered during the microstructure generation. Using nanoporous ß-Li3PS4 electrolyte as an example, we develop a phase-field model that enables generating nanoporous microstructures of different porosities and connectivity patterns based on the depth and the energy of the surface (pore/electrolyte interface), both of which are predicted through density functional theory (DFT) calculations. Room-temperature effective ion conductivities of the generated microstructures are then calculated numerically, using DFT-estimated surface Li-ion conductivity (3.14 × 10-3 S/cm) and experimentally measured bulk Li-ion conductivity (8.93 × 10-7 S/cm) of ß-Li3PS4 as the inputs. We also use the generated microstructures to inform effective medium theories to rapidly predict the effective ion conductivity via analytical calculations. When porosity approaches the percolation threshold, both the numerical and analytical methods predict a significantly enhanced Li-ion conductivity (1.74 × 10-4 S/cm) that is in good agreement with experimental data (1.64 × 10-4 S/cm). The present phase-field based multiscale model is generally applicable to predict both the microstructure patterns and the effective properties of heterogeneous solid electrolytes.

15.
ACS Nano ; 11(3): 3355-3364, 2017 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-28245110

RESUMEN

Epitaxial III-V semiconductor heterostructures are key components in modern microelectronics, electro-optics, and optoelectronics. With superior semiconducting properties, halide perovskite materials are rising as promising candidates for coherent heterostructure devices. In this report, spinodal decomposition is proposed and experimentally implemented to produce epitaxial double heterostructures in halide perovskite system. Pristine epitaxial mixed halide perovskites rods and films were synthesized via van der Waals epitaxy by chemical vapor deposition method. At room temperature, photon was applied as a knob to regulate the kinetics of spinodal decomposition and classic coarsening. By this approach, halide perovskite double heterostructures were created carrying epitaxial interfaces and outstanding optical properties. Reduced Fröhlich electron-phonon coupling was discovered in coherent halide double heterostructure, which is hypothetically attributed to the classic phonon confinement effect widely existing in III-V double heterostructures. As a proof-of-concept, our results suggest that halide perovskite-based epitaxial heterostructures may be promising for high-performance and low-cost optoelectronics, electro-optics, and microelectronics. Thus, ultimately, for practical device applications, it may be worthy to pursue these heterostructures via conventional vapor phase epitaxy approaches widely practised in III-V field.

16.
Adv Mater ; 28(1): 15-39, 2016 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-26551616

RESUMEN

Multiferroic heterostructures can be synthesized by integrating monolithic ferroelectric and magnetic materials, with interfacial coupling between electric polarization and magnetization, through the exchange of elastic, electric, and magnetic energy. Although the nature of the interfaces remains to be unraveled, such cross coupling can be utilized to manipulate the magnetization (or polarization) with an electric (or magnetic) field, known as a converse (or direct) magnetoelectric effect. It can be exploited to significantly improve the performance of or/and add new functionalities to many existing or emerging devices such as memory devices, tunable microwave devices, sensors, etc. The exciting technological potential, along with the rich physical phenomena at the interface, has sparked intensive research on multiferroic heterostructures for more than a decade. Here, we summarize the most recent progresses in the fundamental principles and potential applications of the interface-based magnetoelectric effect in multiferroic heterostructures, and present our perspectives on some key issues that require further study in order to realize their practical device applications.

17.
Sci Rep ; 6: 27561, 2016 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-27272678

RESUMEN

Voltage-driven 180° magnetization switching provides a low-power alternative to current-driven magnetization switching widely used in spintronic devices. Here we computationally demonstrate a promising route to achieve voltage-driven in-plane 180° magnetization switching in a strain-mediated multiferroic heterostructure (e.g., a heterostructure consisting of an amorphous, slightly elliptical Co40Fe40B20 nanomagnet on top of a Pb(Zr,Ti)O3 film as an example). This 180° switching follows a unique precessional path all in the film plane, and is enabled by manipulating magnetization dynamics with fast, local piezostrains (rise/release time <0.1 ns) on the Pb(Zr,Ti)O3 film surface. Our analyses predict ultralow area energy consumption per switching (~0.03 J/m(2)), approximately three orders of magnitude smaller than that dissipated by current-driven magnetization switching. A fast overall switching time of about 2.3 ns is also demonstrated. Further reduction of energy consumption and switching time can be achieved by optimizing the structure and material selection. The present design provides an additional viable route to realizing low-power and high-speed spintronics.

18.
Sci Rep ; 6: 23696, 2016 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-27029464

RESUMEN

Purely voltage-driven, repeatable magnetization reversal provides a tantalizing potential for the development of spintronic devices with a minimum amount of power consumption. Substantial progress has been made in this subject especially on magnetic/ferroelectric heterostructures. Here, we report the in situ observation of such phenomenon in a NiFe thin film grown directly on a rhombohedral Pb(Mg1/3Nb2/3)0.7Ti0.3O3(PMN-PT) ferroelectric crystal. Under a cyclic voltage applied perpendicular to the PMN-PT without a magnetic field, the local magnetization of NiFe can be repetitively reversed through an out-of-plane excursion and then back into the plane. Using phase field simulations we interpret magnetization reversal as a synergistic effect of the metastable ferroelastic switching in the PMN-PT and an electrically rotatable local exchange bias field arising from the heterogeneously distributed NiO clusters at the interface.

19.
Sci Adv ; 2(6): e1600245, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27386578

RESUMEN

Strain is a novel approach to manipulating functionalities in correlated complex oxides. However, significant epitaxial strain can only be achieved in ultrathin layers. We show that, under direct lattice matching framework, large and uniform vertical strain up to 2% can be achieved to significantly modify the magnetic anisotropy, magnetism, and magnetotransport properties in heteroepitaxial nanoscaffold films, over a few hundred nanometers in thickness. Comprehensive designing principles of large vertical strain have been proposed. Phase-field simulations not only reveal the strain distribution but also suggest that the ultimate strain is related to the vertical interfacial area and interfacial dislocation density. By changing the nanoscaffold density and dimension, the strain and the magnetic properties can be tuned. The established correlation among the vertical interface-strain-properties in nanoscaffold films can consequently be used to tune other functionalities in a broad range of complex oxide films far beyond critical thickness.


Asunto(s)
Nanocompuestos/química , Óxidos/química , Algoritmos , Magnetismo , Modelos Teóricos , Nanocompuestos/ultraestructura , Nanotecnología
20.
J Phys Condens Matter ; 27(50): 504005, 2015 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-26613293

RESUMEN

Voltage control of magnetism in multiferroic heterostructures provides a promising solution to the excessive heating in spintronic devices. Direct observation of voltage-modulated magnetic domain evolution dynamics is desirable for studying the mechanism of the voltage control of magnetism at mesoscale, but has remained challenging. Here we explored a characterization method for the dynamic in situ evolution of pure voltage modulated magnetic domains in the heterostructures by employing the scanning Kerr microscopy function in the magneto optic Kerr effect system. The local magnetization reorientation of a Ni/PMN-PT heterostructure were characterized under sweeping applied voltage on the PMN-PT single crystal, and the results show that the magnetization rotation angle in the local regions is much greater than that obtained from macroscopic magnetization hysteresis loops.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA