Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 176(6): 1310-1324.e10, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30827684

RESUMEN

DNA rearrangements resulting in human genome structural variants (SVs) are caused by diverse mutational mechanisms. We used long- and short-read sequencing technologies to investigate end products of de novo chromosome 17p11.2 rearrangements and query the molecular mechanisms underlying both recurrent and non-recurrent events. Evidence for an increased rate of clustered single-nucleotide variant (SNV) mutation in cis with non-recurrent rearrangements was found. Indel and SNV formation are associated with both copy-number gains and losses of 17p11.2, occur up to ∼1 Mb away from the breakpoint junctions, and favor C > G transversion substitutions; results suggest that single-stranded DNA is formed during the genesis of the SV and provide compelling support for a microhomology-mediated break-induced replication (MMBIR) mechanism for SV formation. Our data show an additional mutational burden of MMBIR consisting of hypermutation confined to the locus and manifesting as SNVs and indels predominantly within genes.


Asunto(s)
Cromosomas Humanos Par 17 , Mutación , Anomalías Múltiples/genética , Puntos de Rotura del Cromosoma , Trastornos de los Cromosomas/genética , Duplicación Cromosómica/genética , Variaciones en el Número de Copia de ADN , Reparación del ADN/genética , Replicación del ADN , Reordenamiento Génico , Genoma Humano , Variación Estructural del Genoma , Humanos , Mutación INDEL , Modelos Genéticos , Polimorfismo de Nucleótido Simple , Recombinación Genética , Análisis de Secuencia de ADN/métodos , Síndrome de Smith-Magenis/genética
2.
Am J Hum Genet ; 108(10): 1981-2005, 2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34582790

RESUMEN

Neurodevelopmental disorders (NDDs) are clinically and genetically heterogenous; many such disorders are secondary to perturbation in brain development and/or function. The prevalence of NDDs is > 3%, resulting in significant sociocultural and economic challenges to society. With recent advances in family-based genomics, rare-variant analyses, and further exploration of the Clan Genomics hypothesis, there has been a logarithmic explosion in neurogenetic "disease-associated genes" molecular etiology and biology of NDDs; however, the majority of NDDs remain molecularly undiagnosed. We applied genome-wide screening technologies, including exome sequencing (ES) and whole-genome sequencing (WGS), to identify the molecular etiology of 234 newly enrolled subjects and 20 previously unsolved Turkish NDD families. In 176 of the 234 studied families (75.2%), a plausible and genetically parsimonious molecular etiology was identified. Out of 176 solved families, deleterious variants were identified in 218 distinct genes, further documenting the enormous genetic heterogeneity and diverse perturbations in human biology underlying NDDs. We propose 86 candidate disease-trait-associated genes for an NDD phenotype. Importantly, on the basis of objective and internally established variant prioritization criteria, we identified 51 families (51/176 = 28.9%) with multilocus pathogenic variation (MPV), mostly driven by runs of homozygosity (ROHs) - reflecting genomic segments/haplotypes that are identical-by-descent. Furthermore, with the use of additional bioinformatic tools and expansion of ES to additional family members, we established a molecular diagnosis in 5 out of 20 families (25%) who remained undiagnosed in our previously studied NDD cohort emanating from Turkey.


Asunto(s)
Genómica/métodos , Mutación , Trastornos del Neurodesarrollo/epidemiología , Fenotipo , Adolescente , Adulto , Niño , Preescolar , Estudios de Cohortes , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Linaje , Prevalencia , Turquía/epidemiología , Secuenciación del Exoma , Adulto Joven
3.
Plant Physiol ; 191(3): 1546-1560, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36740243

RESUMEN

SPINDLY (SPY) is a novel nucleocytoplasmic protein O-fucosyltransferase that regulates target protein activity or stability via O-fucosylation of specific Ser/Thr residues. Previous genetic studies indicate that AtSPY regulates plant development during vegetative and reproductive growth by modulating gibberellin and cytokinin responses. AtSPY also regulates the circadian clock and plant responses to biotic and abiotic stresses. The pleiotropic phenotypes of spy mutants point to the likely role of AtSPY in regulating key proteins functioning in diverse cellular pathways. However, very few AtSPY targets are known. Here, we identified 88 SPY targets from Arabidopsis (Arabidopsis thaliana) and Nicotiana benthamiana via the purification of O-fucosylated peptides using Aleuria aurantia lectin followed by electron transfer dissociation-MS/MS analysis. Most AtSPY targets were nuclear proteins that function in DNA repair, transcription, RNA splicing, and nucleocytoplasmic transport. Cytoplasmic AtSPY targets were involved in microtubule-mediated cell division/growth and protein folding. A comparison with the published O-linked-N-acetylglucosamine (O-GlcNAc) proteome revealed that 30% of AtSPY targets were also O-GlcNAcylated, indicating that these distinct glycosylations could co-regulate many protein functions. This study unveiled the roles of O-fucosylation in modulating many key nuclear and cytoplasmic proteins and provided a valuable resource for elucidating the regulatory mechanisms involved.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Represoras/metabolismo , Espectrometría de Masas en Tándem , Arabidopsis/metabolismo , Plantas/metabolismo , Acetilglucosamina/metabolismo
4.
Anim Genet ; 55(1): 168-172, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38093616

RESUMEN

Milk production is one of the most important economic utility of goats. Guanzhong dairy goat is a local dairy goat in Shaanxi Province of China and has high milk yield and quality. However, there are relatively few studies on molecular markers of milk production traits in Guanzhong dairy goats. In this study, we sequenced the whole genomes of 20 Guanzhong dairy goats, 10 of which had high milk yield (HM) and 10 of which had low milk yield (LM). We detected candidate signatures of selection in HM goats using Fst and π-ratio statistics and identified several candidate genes including ANPEP, ADRA1A and PRKG1 associated with milk production. Our results provide the basis for molecular breeding of milk production traits in Guanzhong dairy goats.


Asunto(s)
Genoma , Leche , Animales , Fenotipo , Análisis de Secuencia de ADN , Cabras/genética
5.
Genes Dev ; 30(2): 164-76, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26773002

RESUMEN

The DELLA family of transcription regulators functions as master growth repressors in plants by inhibiting phytohormone gibberellin (GA) signaling in response to developmental and environmental cues. DELLAs also play a central role in mediating cross-talk between GA and other signaling pathways via antagonistic direct interactions with key transcription factors. However, how these crucial protein-protein interactions can be dynamically regulated during plant development remains unclear. Here, we show that DELLAs are modified by the O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT) SECRET AGENT (SEC) in Arabidopsis. O-GlcNAcylation of the DELLA protein REPRESSOR OF ga1-3 (RGA) inhibits RGA binding to four of its interactors-PHYTOCHROME-INTERACTING FACTOR3 (PIF3), PIF4, JASMONATE-ZIM DOMAIN1, and BRASSINAZOLE-RESISTANT1 (BZR1)-that are key regulators in light, jasmonate, and brassinosteroid signaling pathways, respectively. Consistent with this, the sec-null mutant displayed reduced responses to GA and brassinosteroid and showed decreased expression of several common target genes of DELLAs, BZR1, and PIFs. Our results reveal a direct role of OGT in repressing DELLA activity and indicate that O-GlcNAcylation of DELLAs provides a fine-tuning mechanism in coordinating multiple signaling activities during plant development.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Regulación de la Expresión Génica de las Plantas/genética , N-Acetilglucosaminiltransferasas/metabolismo , Transducción de Señal/fisiología , Acilación , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Giberelinas/metabolismo , Mutación , N-Acetilglucosaminiltransferasas/genética , Unión Proteica
6.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1517-1525, 2024 Mar.
Artículo en Zh | MEDLINE | ID: mdl-38621935

RESUMEN

Cervi Cornu is the ossified antler, or the base antler that falls off in the spring of the following year after the pilose antler is sawn off from Cervus elaphus or C. nippon, as a precious traditional Chinese medicine, has been recognized for its medicinal value and widely used in clinical practice. However, the origins of Cervi Cornu are miscellaneous, and Cervi Cornu is even mixed with adulterants in the market. Currently, there is a shortage of ways to identify Cervi Cornu and no standard to control the quality of Cervi Cornu. So it is valuable to develop a way to effectively identify Cervi Cornu from the adulterants. In this study, the differences in the mitochondrial barcode cytochrome b(Cytb) gene sequences of C. elaphus, C. nippon and their related species were compared and the specific single nucleotide polymorphism(SNP) sites on the Cytb sequences of Cervi Cornu were screened out. According to the screened SNPs, Cervi Cornu-specific primers dishmy-F and dishmy-R were designed. The PCR system was established and optimized, and the tolerance and feasibility of Taq polymerases and PCR systems affecting the repeatability of the PCR method were investigated. The amplification products of C. elaphus and C. nippon were digested using the restriction enzyme MseⅠ. The results showed that after electrophoresis of the product from PCR with the annealing temperature of 56 ℃ and 35 cycles, a single specific band at about 100 bp was observed for C. elaphus samples, and the product of C. elaphus samples was 60 bp shorter than that of C. nippon samples. There was no band for adulterants from other similar species such as Alces alces, Rangifer tarandus, Odocoileus virginianus, O. hemionus, Cap-reolus pygargus, Przewalskium albirostis and negative controls. The polymerase chain reaction-restriction fragment length polymorphism(PCR-RFLP) method established in this study can quickly and accurately identify Cervi Cornu originated from C. elaphus in crude drugs, standard decoctions, and formula granules, and distinguish the origins of Cervi Cornu products, i.e., C. nippon and similar species. This study can be a reference for other studies on the quality standard of other formula granules of traditional Chinese medicines.


Asunto(s)
Cornus , Ciervos , Animales , Polimorfismo de Longitud del Fragmento de Restricción , Cornus/genética , Reacción en Cadena de la Polimerasa/métodos , Ciervos/genética , Cartilla de ADN
7.
Metab Brain Dis ; 38(5): 1531-1542, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36867300

RESUMEN

Increasing number of studies have proven that circular RNAs (circRNAs) play a major role in the biological processes of many different cancers, including glioma, especially as competitive molecular sponges of microRNAs (miRNAs). However, the clear molecular mechanism of the circRNA network in glioma is still not well understood. The expression level of circRNA-104718 and microRNA (miR)-218-5p in glioma tissues and cells were detected by quantitative real-time polymerase chain reaction (qRT-PCR). The target protein's expression level was assessed by western blotting. Bioinformatics systems were used to predict the possible microRNAs and target genes of circRNA-104718, after which dual-luciferase reporter assays were used to confirm the predicted interactions. The proliferation, invasion, migration and apoptosis of glioma cells were detected by CCK, EdU, transwell, wound-healing and flow cytometry assays. CircRNA-104718 was upregulated in human glioma tissues, and a higher level of circRNA-104718 indicated poorer outcomes in glioma patients. In contrast, in glioma tissues, miR-218-5p was downregulated. Knockdown of circRNA-104718 suppressed migration and invasion while boosting the apoptosis rate of glioma cells. In addition, the upregulation of miR-218-5p in glioma cells caused the same suppression. Mechanistically, circRNA-104718 inhibited the protein expression level of high mobility group box-1 (HMGB1) by acting as a molecular sponge for miR-218-5p. CircRNA-104718 is a suppressive factor in glioma cells and might represent a new target for the treatment of glioma patients. CircRNA-104718 modulates glioma cell proliferation through the miR-218-5p/HMGB1 signalling axis. CircRNA-104718 provides a possible mechanism for understanding the pathogenesis of glioma.


Asunto(s)
Neoplasias Encefálicas , Glioma , Proteína HMGB1 , MicroARNs , Transducción de Señal , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Proliferación Celular , Glioma/genética , Glioma/patología , Proteína HMGB1/genética , MicroARNs/genética , MicroARNs/metabolismo , ARN Circular/genética
8.
Ecotoxicol Environ Saf ; 252: 114571, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36708663

RESUMEN

Zearalenone (ZEA), one of the non-steroidal estrogen mycotoxin, can cause male reproductive damage and genotoxicity in mammals. Testicular oxidative injury is an important factor causing male sterility. Testicular Sertoli cells are essential for spermatogenesis and male fertility. At present, the mechanism of oxidative injury in dairy goat Sertoli cells after exposure to ZEA remains unclear. This study explored the effects of ZEA on oxidative stress and autophagy in dairy goat Sertoli cells. It was found that treatment of primary Sertoli cells with 25, 50 and 100 µmol/L ZEA for 24 h can promote ROS production, decrease cell viability, antioxidant enzyme activity and mitochondrial membrane potential, induce caspase-dependent cell apoptosis and autophagy activity. ZEA-induced autophagy was confirmed by LC3-I/LC3-II transformation. More importantly, N-acetylcysteine (NAC) pretreatment can remarkably inhibit ZEA-induced oxidative stress, apoptosis and autophagy in Sertoli cells by eliminating ROS. In conclusion, this study indicates that ZEA induces oxidative stress and autophagy in dairy goat Sertoli cells by promoting ROS production.


Asunto(s)
Zearalenona , Animales , Masculino , Zearalenona/toxicidad , Células de Sertoli/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Cabras/metabolismo , Estrés Oxidativo , Apoptosis , Autofagia
9.
Ecotoxicol Environ Saf ; 259: 115063, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37229875

RESUMEN

The deleterious effects of aflatoxins, especially aflatoxin B1 (AFB1) which are widespread at all stages of food production, on the reproductive system have been widely reported in males. However, it is still far from fully understood about the toxic effect and molecular mechanism after exposure to AFB1 in various testicular cells, especially Sertoli cells (SCs) which provide various energy materials and support to the developing germ cells as nurse cells. In this work, we examined the effects of AFB1 in dairy goat SCs on lactate production and autophagy, and the role of autophagy on AFB1-induced reduction in lactate production. Mechanistically, AFB1 destroyed the energy balance and reduced the secretion of lactate in dairy goat SCs (P < 0.01), resulting in a reduced level of ATP (P < 0.01) and phosphorylation of AMPK (P < 0.01). Subsequently, activated AMPK triggers autophagy by directly phosphorylating ULK1 (P < 0.05). The enhancement of autophagy partially reversed the AFB1-induced decrease in lactate secretion by promoting glucose utilization (P < 0.01) and increasing the expression of proteins related to lactate secretion in dairy goat SCs (P < 0.05) such as GLUT1, GLUT3, LDHA, and MCT4. Collectively, our study suggests that AFB1 inhibits the secretion of lactate which supply for germ cell development by damaging the "Warburg-like" metabolism of dairy goat SCs. Moreover, autophagy contributes to the resistance of glucose metabolism damage induced by AFB1. DATA AVAILABILITY: All data generated or analyzed in this study are available from the corresponding authors upon request.


Asunto(s)
Aflatoxina B1 , Células de Sertoli , Masculino , Animales , Células de Sertoli/metabolismo , Aflatoxina B1/toxicidad , Proteínas Quinasas Activadas por AMP/metabolismo , Autofagia , Ácido Láctico/metabolismo , Cabras/metabolismo
10.
Pediatr Hematol Oncol ; 40(8): 719-738, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37366551

RESUMEN

The potential of circulating tumor DNA (ctDNA) analysis to serve as a real-time "liquid biopsy" for children with central nervous system (CNS) and non-CNS solid tumors remains to be fully elucidated. We conducted a study to investigate the feasibility and potential clinical utility of ctDNA sequencing in pediatric patients enrolled on an institutional clinical genomics trial. A total of 240 patients had tumor DNA profiling performed during the study period. Plasma samples were collected at study enrollment from 217 patients and then longitudinally from a subset of patients. Successful cell-free DNA extraction and quantification occurred in 216 of 217 (99.5%) of these initial samples. Twenty-four patients were identified whose tumors harbored 30 unique variants that were potentially detectable on a commercially-available ctDNA panel. Twenty of these 30 mutations (67%) were successfully detected by next-generation sequencing in the ctDNA from at least one plasma sample. The rate of ctDNA mutation detection was higher in patients with non-CNS solid tumors (7/9, 78%) compared to those with CNS tumors (9/15, 60%). A higher ctDNA mutation detection rate was also observed in patients with metastatic disease (9/10, 90%) compared to non-metastatic disease (7/14, 50%), although tumor-specific variants were detected in a few patients in the absence of radiographic evidence of disease. This study illustrates the feasibility of incorporating longitudinal ctDNA analysis into the management of relapsed or refractory patients with childhood CNS or non-CNS solid tumors.


Asunto(s)
Neoplasias Encefálicas , ADN Tumoral Circulante , Humanos , Niño , ADN Tumoral Circulante/genética , Estudios de Factibilidad , Biomarcadores de Tumor , Secuenciación de Nucleótidos de Alto Rendimiento , Neoplasias Encefálicas/genética , Mutación
11.
Int J Mol Sci ; 24(21)2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37958534

RESUMEN

The results of artificial insemination (AI) are adversely affected by changes in sperm motility and function throughout the cryopreservation procedure. The proteome alterations of frozen-thawed spermatozoa with various levels of freezability in dairy goats, however, remain largely unknown. To discover differentially expressed proteins (DEPs) and their roles in dairy goat sperm with high or low freezability (HF or LF), we conducted 4D-DIA quantitative proteomics analysis, the results of which are presented in this work. Additionally, we explored the underlying processes that may lead to the variations in sperm freezing resistance. A total of 263 DEPs (Fold Change > 2.0, p-value < 0.05) were identified between the HF group and LF group in frozen-thawed dairy goat spermatozoa. In our Gene Ontology (GO) enrichment analysis, the DEPs were mostly associated with the regulation of biological processes, metabolic processes, and responses to stress and cellular component biogenesis. Our Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis also revealed that the DEPs were predominantly engaged in oxidative phosphorylation, N-Glycan biosythesis, and cysteine and methionien metabolism. A protein-protein interaction (PPI) network analysis revealed 14 potential proteins (NUDFB8, SDHC, PDIA4, HSPB1, etc.) that might influence the freezability of dairy goat sperm. These findings shed light on the processes underlying alterations in the proteome and sperm freezability, aiding further research on sperm cryopreservation.


Asunto(s)
Preservación de Semen , Semen , Masculino , Animales , Semen/fisiología , Proteómica , Proteoma , Motilidad Espermática/fisiología , Preservación de Semen/veterinaria , Preservación de Semen/métodos , Espermatozoides/fisiología , Criopreservación/veterinaria , Criopreservación/métodos , Cabras
12.
Hum Mutat ; 43(12): 2033-2053, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36054313

RESUMEN

Xia-Gibbs syndrome (XGS; MIM# 615829) is a rare mendelian disorder characterized by Development Delay (DD), intellectual disability (ID), and hypotonia. Individuals with XGS typically harbor de novo protein-truncating mutations in the AT-Hook DNA binding motif containing 1 (AHDC1) gene, although some missense mutations can also cause XGS. Large de novo heterozygous deletions that encompass the AHDC1 gene have also been ascribed as diagnostic for the disorder, without substantial evidence to support their pathogenicity. We analyzed 19 individuals with large contiguous deletions involving AHDC1, along with other genes. One individual bore the smallest known contiguous AHDC1 deletion (∼350 Kb), encompassing eight other genes within chr1p36.11 (Feline Gardner-Rasheed, IFI6, FAM76A, STX12, PPP1R8, THEMIS2, RPA2, SMPDL3B) and terminating within the first intron of AHDC1. The breakpoint junctions and phase of the deletion were identified using both short and long read sequencing (Oxford Nanopore). Quantification of RNA expression patterns in whole blood revealed that AHDC1 exhibited a mono-allelic expression pattern with no deficiency in overall AHDC1 expression levels, in contrast to the other deleted genes, which exhibited a 50% reduction in mRNA expression. These results suggest that AHDC1 expression in this individual is compensated by a novel regulatory mechanism and advances understanding of mutational and regulatory mechanisms in neurodevelopmental disorders.


Asunto(s)
Anomalías Múltiples , Discapacidad Intelectual , Anomalías Musculoesqueléticas , Trastornos del Neurodesarrollo , Humanos , Anomalías Múltiples/genética , Proteínas de Unión al ADN/genética , Endorribonucleasas , Discapacidad Intelectual/genética , Trastornos del Neurodesarrollo/genética , Fosfoproteínas Fosfatasas , Proteínas Qa-SNARE , Proteínas de Unión al ARN , Esfingomielina Fosfodiesterasa
13.
Am J Hum Genet ; 105(1): 132-150, 2019 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-31230720

RESUMEN

Arthrogryposis is a clinical finding that is present either as a feature of a neuromuscular condition or as part of a systemic disease in over 400 Mendelian conditions. The underlying molecular etiology remains largely unknown because of genetic and phenotypic heterogeneity. We applied exome sequencing (ES) in a cohort of 89 families with the clinical sign of arthrogryposis. Additional molecular techniques including array comparative genomic hybridization (aCGH) and Droplet Digital PCR (ddPCR) were performed on individuals who were found to have pathogenic copy number variants (CNVs) and mosaicism, respectively. A molecular diagnosis was established in 65.2% (58/89) of families. Eleven out of 58 families (19.0%) showed evidence for potential involvement of pathogenic variation at more than one locus, probably driven by absence of heterozygosity (AOH) burden due to identity-by-descent (IBD). RYR3, MYOM2, ERGIC1, SPTBN4, and ABCA7 represent genes, identified in two or more families, for which mutations are probably causative for arthrogryposis. We also provide evidence for the involvement of CNVs in the etiology of arthrogryposis and for the idea that both mono-allelic and bi-allelic variants in the same gene cause either similar or distinct syndromes. We were able to identify the molecular etiology in nine out of 20 families who underwent reanalysis. In summary, our data from family-based ES further delineate the molecular etiology of arthrogryposis, yielded several candidate disease-associated genes, and provide evidence for mutational burden in a biological pathway or network. Our study also highlights the importance of reanalysis of individuals with unsolved diagnoses in conjunction with sequencing extended family members.


Asunto(s)
Artrogriposis/genética , Artrogriposis/patología , Variaciones en el Número de Copia de ADN , Marcadores Genéticos , Genómica/métodos , Herencia Multifactorial/genética , Mutación , Adolescente , Adulto , Niño , Preescolar , Estudios de Cohortes , Conectina/genética , Femenino , Edad Gestacional , Humanos , Lactante , Recién Nacido , Masculino , Mosaicismo , Linaje , Canal Liberador de Calcio Receptor de Rianodina/genética , Proteínas de Transporte Vesicular/genética , Secuenciación del Exoma , Adulto Joven
14.
Genet Med ; 24(5): 1062-1072, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35331649

RESUMEN

PURPOSE: The Mayo-Baylor RIGHT 10K Study enabled preemptive, sequence-based pharmacogenomics (PGx)-driven drug prescribing practices in routine clinical care within a large cohort. We also generated the tools and resources necessary for clinical PGx implementation and identified challenges that need to be overcome. Furthermore, we measured the frequency of both common genetic variation for which clinical guidelines already exist and rare variation that could be detected by DNA sequencing, rather than genotyping. METHODS: Targeted oligonucleotide-capture sequencing of 77 pharmacogenes was performed using DNA from 10,077 consented Mayo Clinic Biobank volunteers. The resulting predicted drug response-related phenotypes for 13 genes, including CYP2D6 and HLA, affecting 21 drug-gene pairs, were deposited preemptively in the Mayo electronic health record. RESULTS: For the 13 pharmacogenes of interest, the genomes of 79% of participants carried clinically actionable variants in 3 or more genes, and DNA sequencing identified an average of 3.3 additional conservatively predicted deleterious variants that would not have been evident using genotyping. CONCLUSION: Implementation of preemptive rather than reactive and sequence-based rather than genotype-based PGx prescribing revealed nearly universal patient applicability and required integrated institution-wide resources to fully realize individualized drug therapy and to show more efficient use of health care resources.


Asunto(s)
Citocromo P-450 CYP2D6 , Farmacogenética , Centros Médicos Académicos , Secuencia de Bases , Citocromo P-450 CYP2D6/genética , Genotipo , Humanos , Farmacogenética/métodos
15.
Pediatr Blood Cancer ; 69(11): e29859, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35713195

RESUMEN

BACKGROUND: The association of childhood cancer with Lynch syndrome is not established compared with the significant pediatric cancer risk in recessive constitutional mismatch repair deficiency syndrome (CMMRD). PROCEDURE: We describe the clinical features, germline analysis, and tumor genomic profiling of patients with Lynch syndrome among patients enrolled in pediatric cancer genomic studies. RESULTS: There were six of 773 (0.8%) pediatric patients with solid tumors identified with Lynch syndrome, defined as a germline heterozygous pathogenic variant in one of the mismatch repair (MMR) genes (three with MSH6, two with MLH1, and one with MSH2). Tumor analysis demonstrated evidence for somatic second hits and/or increased tumor mutation burden in three of four patients with available tumor with potential implications for therapy and identification of at-risk family members. Only one patient met current guidelines for pediatric cancer genetics evaluation at the time of tumor diagnosis. CONCLUSION: Approximately 1% of children with cancer have Lynch syndrome, which is missed with current referral guidelines, suggesting the importance of adding MMR genes to tumor and hereditary pediatric cancer panels. Tumor analysis may provide the first suggestion of an underlying cancer predisposition syndrome and is useful in distinguishing between Lynch syndrome and CMMRD.


Asunto(s)
Neoplasias Colorrectales Hereditarias sin Poliposis , Neoplasias Encefálicas , Niño , Neoplasias Colorrectales , Neoplasias Colorrectales Hereditarias sin Poliposis/diagnóstico , Neoplasias Colorrectales Hereditarias sin Poliposis/genética , Reparación de la Incompatibilidad de ADN/genética , Proteínas de Unión al ADN/genética , Mutación de Línea Germinal , Humanos , Homólogo 1 de la Proteína MutL/genética , Proteína 2 Homóloga a MutS/genética , Síndromes Neoplásicos Hereditarios
16.
Reprod Domest Anim ; 57(10): 1187-1197, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35727184

RESUMEN

Porcine sperm is rich in polyunsaturated fatty acids; therefore, it is highly susceptible to oxidative damage during storage. Inhibition of oxidative stress during preservation is essential for maintaining sperm motility. Astaxanthin is a potent antioxidant used in the cosmetic and pharmaceutical industries. This study aimed to explore the effect of supplementing astaxanthin as an extender of porcine semen preservation dilutions at 17°C. Various concentrations of astaxanthin were added to diluted porcine semen at 17°C. We performed computer-assisted semen analysis, evaluation of plasma membrane integrity and acrosome integrity, and measurement of total antioxidant activity, malondialdehyde (MDA) content, reactive oxygen species levels, superoxide dismutase (SOD) activity, catalase (CAT) activity, glutathione peroxidase (GSH-PX) activity and sperm motility parameters. Compared with the control group, the addition of 0.25 µg/ml astaxanthin group significantly improved sperm motility parameters stored on the fifth day; these were increased levels of sperm SOD, GSH-PX and CAT (p < .05), increased sperm adenosine trisphosphate and lactate dehydrogenase levels and decreased sperm MDA levels (p < .05). These findings suggest that adding 0.25 µg/ml of astaxanthin improves the quality of porcine semen stored at 17°C. Our findings provide theoretical support for developing new protective agents critical for preserving pig semen at 17°C.


Asunto(s)
Análisis de Semen , Preservación de Semen , Adenosina/metabolismo , Animales , Antioxidantes/metabolismo , Antioxidantes/farmacología , Catalasa/farmacología , Glutatión Peroxidasa , Lactato Deshidrogenasas/metabolismo , Masculino , Malondialdehído/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Semen/fisiología , Análisis de Semen/veterinaria , Preservación de Semen/veterinaria , Motilidad Espermática , Espermatozoides/fisiología , Superóxido Dismutasa/metabolismo , Porcinos , Xantófilas
17.
Hum Mutat ; 42(5): 577-591, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33644933

RESUMEN

Xia-Gibbs syndrome (XGS) is a rare Mendelian disease typically caused by de novo stop-gain or frameshift mutations in the AT-hook DNA binding motif containing 1 (AHDC1) gene. Patients usually present in early infancy with hypotonia and developmental delay and later exhibit intellectual disability (ID). The overall presentation is variable, however, and the emerging clinical picture is still evolving. A detailed phenotypic analysis of 34 XGS individuals revealed five core phenotypes (delayed motor milestones, speech delay, low muscle tone, ID, and hypotonia) in more than 80% of individuals and an additional 12 features that occurred more variably. Seizures and scoliosis were more frequently associated with truncations that arise before the midpoint of the protein although the occurrence of most features could not be predicted by the mutation position. Transient expression of wild type and different patient truncated AHDC1 protein forms in human cell lines revealed abnormal patterns of nuclear localization including a diffuse distribution of a short truncated form and nucleolar aggregation in mid-protein truncated forms. Overall, both the occurrence of variable phenotypes and the different distribution of the expressed protein reflect the heterogeneity of this syndrome.


Asunto(s)
Anomalías Múltiples , Discapacidad Intelectual , Anomalías Múltiples/genética , Anomalías Múltiples/patología , Alelos , Proteínas de Unión al ADN/genética , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Mutación , Fenotipo , Síndrome
18.
Biol Reprod ; 105(5): 1344-1354, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34467369

RESUMEN

Seasonal reproduction contributes to increased chances of offspring survival in some animals. Dairy goats are seasonal breeding mammals. In this study, adult male Guanzhong dairy goats (10-12 months old) were used. Testis size, semen quality, hormone level, apoptosis of germ cells, and autophagy of Sertoli cells were analyzed in dairy goats during the breeding (October) and nonbreeding (April) seasons. We found that, during the nonbreeding season for dairy goats, semen quality, follicle-stimulating hormone (FSH) levels, and testosterone levels were reduced, and the number of apoptotic germ cells increased. The proliferation with decrease activity of germ cells in dairy goat during the nonbreeding season was significantly affected. However, the testis size did not change seasonally. Interestingly, Sertoli cell autophagy was more active during the nonbreeding season. The expression levels of FSH receptor, wilms tumor 1, androgen binding protein, glial cell derived neurotrophic factor, and stem cell factor decreased in dairy goats during the nonbreeding season. In summary, our results indicate that spermatogenesis in dairy goats during the nonbreeding season was not completely arrested. In addition, germ cell apoptosis and the morphology of Sertoli cells considerably changed in dairy goats during the nonbreeding season. Sertoli cell autophagy is involved in the seasonal regulation of spermatogenesis in dairy goats. These findings provide key insights into the fertility and spermatogenesis of seasonal breeding animals.


Asunto(s)
Autofagia , Expresión Génica , Testículo/fisiología , Animales , Cabras/anatomía & histología , Cabras/genética , Cabras/fisiología , Masculino , Estaciones del Año , Análisis de Semen , Células de Sertoli/fisiología , Testículo/anatomía & histología
19.
Genet Med ; 23(12): 2404-2414, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34363016

RESUMEN

PURPOSE: Cardiovascular disease (CVD) is the leading cause of death in adults in the United States, yet the benefits of genetic testing are not universally accepted. METHODS: We developed the "HeartCare" panel of genes associated with CVD, evaluating high-penetrance Mendelian conditions, coronary artery disease (CAD) polygenic risk, LPA gene polymorphisms, and specific pharmacogenetic (PGx) variants. We enrolled 709 individuals from cardiology clinics at Baylor College of Medicine, and samples were analyzed in a CAP/CLIA-certified laboratory. Results were returned to the ordering physician and uploaded to the electronic medical record. RESULTS: Notably, 32% of patients had a genetic finding with clinical management implications, even after excluding PGx results, including 9% who were molecularly diagnosed with a Mendelian condition. Among surveyed physicians, 84% reported medical management changes based on these results, including specialist referrals, cardiac tests, and medication changes. LPA polymorphisms and high polygenic risk of CAD were found in 20% and 9% of patients, respectively, leading to diet, lifestyle, and other changes. Warfarin and simvastatin pharmacogenetic variants were present in roughly half of the cohort. CONCLUSION: Our results support the use of genetic information in routine cardiovascular health management and provide a roadmap for accompanying research.


Asunto(s)
Cardiología , Enfermedades Cardiovasculares , Adulto , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/terapia , Pruebas Genéticas , Humanos , Farmacogenética/métodos , Pruebas de Farmacogenómica , Estados Unidos
20.
Plant Cell ; 30(8): 1710-1728, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30008445

RESUMEN

Fruit initiation following fertilization in angiosperms is strictly regulated by phytohormones. In tomato (Solanum lycopersicum), auxin and gibberellin (GA) play central roles in promoting fruit initiation. Without fertilization, elevated GA or auxin signaling can induce parthenocarpy (seedless fruit production). The GA-signaling repressor SlDELLA and auxin-signaling components SlIAA9 and SlARF7 repress parthenocarpy, but the underlying mechanism is unknown. Here, we show that SlDELLA and the SlARF7/SlIAA9 complex mediate crosstalk between GA and auxin pathways to regulate fruit initiation. Yeast-two-hybrid and coimmunoprecipitation assays showed that SlARF7 and additional activator SlARFs interact with SlDELLA and SlIAA9 through distinct domains. SlARF7/SlIAA9 and SlDELLA antagonistically modulate the expression of feedback-regulated genes involved in GA and auxin metabolism, whereas SlARF7/SlIAA9 and SlDELLA coregulate the expression of fruit growth-related genes. Analysis of procera (della), SlARF7 RNAi (with downregulated expression of multiple activator SlARFs), and entire (iaa9) single and double mutants indicated that these genes additively affect parthenocarpy, supporting the notion that the SlARFs/SlIAA9 and SlDELLA interaction plays an important role in regulating fruit initiation. Analysis of the GA-deficient mutant gib1 showed that active GA biosynthesis and signaling are required for auxin-induced fruit initiation. Our study reveals how direct crosstalk between auxin- and GA-signaling components is critical for tomato fruit initiation.


Asunto(s)
Frutas/metabolismo , Giberelinas/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/metabolismo , Frutas/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Solanum lycopersicum/genética , Proteínas de Plantas/genética , Transducción de Señal/genética , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA