Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Biochem Genet ; 62(5): 3439-3466, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38108937

RESUMEN

Uterine corpus endometrial carcinoma (UCEC), a prevalent kind of cancerous tumor in female reproductive system that has a dismal prognosis in women worldwide. Given the very limited studies of cuproptosis-related lncRNAs (CRLs) in UCEC. Our purpose was to construct a prognostic profile based on CRLs and explore its assess prognostic value in UCEC victims and its correlation with the immunological microenvironment. METHODS: 554 UCEC tumor samples and 23 normal samples' RNA-seq statistics and clinical details were compiled from data in the TCGA database. CRLs were obtained using Pearson correlation analysis. Using LASSO Cox regression, multivariate Cox regression, and univariate Cox regression analysis, six CRLs are confirmed to develop a risk prediction model at last.We identified two main molecular subtypes and observed that multilayer CRLs modifications were related to patient clinicopathological features, prognosis, and tumor microenvironment (TME) cell infiltration characteristics, and then we verified the prognostic hallmark of UCEC and examined its immunological landscape.Finally, using qRT-PCR, model hub genes' expression patterns were confirmed. RESULTS: A unique CRL signature was established by the combination of six differently expressed CRLs that were highly linked with the prognosis of UCEC patients. According to their CRLs signatures, the patients were divided into two groups: the low-risk and the high-risk groups. Compared to individuals at high risk, patients at low risk had higher survival rates (p < 0.001). Additionally, Cox regression reveals that the profiles of lncRNAs linked to cuproptosis may independently predict prognosis in UCEC patients. The 1-, 3-, and 5-year risks' respective receiver operating characteristics (ROC) exhibited AUC values of 0.778, 0.810, and 0.854. Likewise, the signature could predict survival in different groups based on factors like stage, age, and grade, among others. Further investigation revealed differences between the different risk score groups in terms of drug sensitivity,immune cell infiltration,tumor mutation burden (TMB) score and microsatellite instability (MSI) score. Compared to the group of high risk, the low-risk group had greater rates of TMB and MSI. Results from qRT-PCR revealed that in UCEC vs normal tissues, AC026202.2, NRAV, AC079466.2, and AC090617.5 were upregulated,while LINC01545 and AL450384.1 were downregulated. CONCLUSIONS: Our research clarified the relationship between CRLs signature and the immunological profile and prognosis of UCEC.This signature will establish the framework for future investigations into the endometrial cancer CRLs mechanism as well as the exploitation of new diagnostic tools and new therapeutic.


Asunto(s)
Neoplasias Endometriales , Inmunoterapia , ARN Largo no Codificante , Humanos , Femenino , ARN Largo no Codificante/genética , Neoplasias Endometriales/genética , Neoplasias Endometriales/inmunología , Neoplasias Endometriales/patología , Pronóstico , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología , Persona de Mediana Edad , Regulación Neoplásica de la Expresión Génica , Biomarcadores de Tumor/genética , Transcriptoma
2.
Artículo en Inglés | MEDLINE | ID: mdl-39428333

RESUMEN

BACKGROUND: Balloon catheter isolation is a promising auxiliary method for thermal ablation treatment of liver cancer. We aimed to explore the safety and effectiveness of balloon catheter isolation-assisted ultrasound-guided percutaneous microwave ablation (MWA) in treating liver cancer in difficult anatomical locations. METHODS: Data of 132 patients with 145 difficult-site liver cancer treated with ultrasound-guided percutaneous MWA were retrospectively analyzed. Participants were classified into the isolation (n = 40) and non-isolation (n = 92) groups based on whether the patients were treated using a balloon catheter prior to ablation. The major complication rates, local tumor residuals (LTR), and tumor follow-up for local tumor progression (LTP) at 6 and 12 months post-ablation were compared between the two groups. RESULTS: The rates of major postoperative complications did not significantly differ between the isolation and non-isolation groups (2.5% vs. 4.3%, P = 0.609). The postoperative LTR rates were significantly different between the isolation and non-isolation groups (4.8% vs. 17.5%, P = 0.032). Balloon catheter isolation [odds ratio (OR) = 0.225, 95% confidence interval (CI): 0.085-0.595, P = 0.009] and tumor diameter (OR = 2.808, 95% CI: 1.186-6.647, P = 0.019) were identified as independent factors influencing LTR rate. The cumulative LTP rates at 6 and 12 months after ablation showed no significant differences between the isolation and non-isolation groups (2.6% vs. 7.9%, P = 0.661; 4.9% vs. 9.8%, P = 0.676, respectively). Cox proportional hazards regression analysis showed that tumor diameter was an independent risk factor for cumulative LTP rate (OR = 3.445, 95% CI: 1.406-8.437, P = 0.017). CONCLUSIONS: Balloon catheter isolation-assisted MWA was safe and effective in the treatment of difficult-site liver cancer. Additionally, tumor diameter significantly influenced LTR and LTP rates after ablation.

3.
Nano Lett ; 23(12): 5811-5821, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37289977

RESUMEN

Nuclear proteins have been regarded as attractive targets for exploiting therapeutic agents. However, those agents cannot efficiently pass through nuclear pores and it is also difficult to overcome the crowded nuclear environment to react with proteins. Herein, we propose a novel strategy acting in the cytoplasm to regulate nuclear proteins based on their signaling pathways, instead of directly entering into nuclei. A multifunctional complex PKK-TTP/hs carries human telomerase reverse transcriptase (hTERT) small interfering RNA (defined as hs) for gene silencing in the cytoplasm, which reduced the import of nuclear protein. At the same time, it could generate reactive oxygen species (ROS) under light irradiation, which raised the export of nuclear proteins by promoting proteins translocation. Through this dual-regulatory pathway, we successfully reduced nuclear protein (hTERT proteins) in vivo (42.3%). This work bypasses the challenge of directly entering into the nucleus and provides an effective strategy for regulating nuclear proteins.


Asunto(s)
Telomerasa , Humanos , Telomerasa/genética , Telomerasa/metabolismo , Transporte Activo de Núcleo Celular/fisiología , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Proteínas Nucleares
4.
Angew Chem Int Ed Engl ; 63(18): e202400249, 2024 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-38372669

RESUMEN

The cell membrane is a crucial component of cells, protecting their integrity and stability while facilitating signal transduction and information exchange. Therefore, disrupting its structure or impairing its functions can potentially cause irreversible cell damage. Presently, the tumor cell membrane is recognized as a promising therapeutic target for various treatment methods. Given the extensive research focused on cell membranes, it is both necessary and timely to discuss these developments, from materials design to specific biomedical applications. This review covers treatments based on functional materials targeting the cell membrane, ranging from well-known membrane-anchoring photodynamic therapy to recent lysosome-targeting chimaeras for protein degradation. The diverse therapeutic mechanisms are introduced in the following sections: membrane-anchoring phototherapy, self-assembly on the membrane, in situ biosynthesis on the membrane, and degradation of cell membrane proteins by chimeras. In each section, we outline the conceptual design or general structure derived from numerous studies, emphasizing representative examples to understand advancements and draw inspiration. Finally, we discuss some challenges and future directions in membrane-targeted therapy from our perspective. This review aims to engage multidisciplinary readers and encourage researchers in related fields to advance the fundamental theories and practical applications of membrane-targeting therapeutic agents.


Asunto(s)
Proteínas de la Membrana , Neoplasias , Humanos , Membrana Celular/química , Proteínas de la Membrana/metabolismo , Fototerapia , Neoplasias/metabolismo
5.
Angew Chem Int Ed Engl ; 63(5): e202313139, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-37889872

RESUMEN

Nanofibers are one of the most important morphologies of molecular self-assemblies, the formation of which relies on the diverse intermolecular interactions of fibrous-forming units. In the past decade, rapid advances have been made in the biomedical application of nanofibers, such as bioimaging and tumor treatment. An important topic to be focused on is not only the nanofiber formation mechanism but also where it forms, because different destinations could have different influences on cells and its formation could be triggered by unique stimuli in organelles. It is therefore necessary and timely to summarize the nanofibers assembled in organelles. This minireview discusses the formation mechanism, triggering strategies, and biomedical applications of nanofibers, which may facilitate the rational design of nanofibers, improve our understanding of the relationship between nanofiber properties and organelle characteristics, allow a comprehensive recognition of organelles affected by materials, and enhance the therapeutic efficiency of nanofibers.


Asunto(s)
Nanofibras , Neoplasias , Humanos , Nanofibras/química , Orgánulos
6.
Angew Chem Int Ed Engl ; 63(17): e202400766, 2024 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-38438308

RESUMEN

Realizing protein analysis in organelles of living cells is of great significance for developing diagnostic and therapeutic methods of diseases. Fluorescent-labeled antibodies with well imaging performance and high affinity are classical biochemical tools for protein analysis, while due to the inability to effectively enter into cells, not to mention organelles and the uncontrollable reaction sites that might cause antibodies inactivation when chemically modification, they are hard to apply to living cells. Inspired by the structure of fluorescent-labeled antibodies, we designed as a universal detection platform that was based on the peptide-conjugated probes (PCPs) and consisted of three parts: a) a rotor type fluorescent molecular scaffold for conjugation and signal output; b) the cell penetration protein recognition unit; c) the subcellular organelle targeting unit. In living cells, PCPs could firstly localize at organelles and then proceed protein specific recognition, thus jointly leading to the restriction of twisted intramolecular charge transfer and activation of fluorescence signal. As a proof-of-concept, six different proteins in three typical intracellular organelles could be detected by our platform through simply replacing the recognition sequence of proteins and matching organelle targeting units. The position and intensity of fluorescence signals demonstrated specificity of PCPs and universality of the platform.


Asunto(s)
Colorantes Fluorescentes , Orgánulos , Colorantes Fluorescentes/química , Orgánulos/química , Péptidos/metabolismo , Fluorescencia
7.
Angew Chem Int Ed Engl ; 63(9): e202317578, 2024 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-38192016

RESUMEN

Designing reactive calcium-based nanogenerators to produce excess calcium ions (Ca2+ ) in tumor cells is an attractive tumor treatment method. However, nanogenerators that introduce exogenous Ca2+ are either overactive incapable of on-demand release, or excessively inert incapable of an overload of calcium rapidly. Herein, inspired by inherently diverse Ca2+ -regulating channels, a photo-controlled Ca2+ nanomodulator that fully utilizes endogenous Ca2+ from dual sources was designed to achieve Ca2+ overload in tumor cells. Specifically, mesoporous silica nanoparticles were used to co-load bifunctional indocyanine green as a photodynamic/photothermal agent and a thermal-sensitive nitric oxide (NO) donor (BNN-6). Thereafter, they were coated with hyaluronic acid, which served as a tumor cell-targeting unit and a gatekeeper. Under near-infrared light irradiation, the Ca2+ nanomodulator can generate reactive oxygen species that stimulate the transient receptor potential ankyrin subtype 1 channel to realize Ca2+ influx from extracellular environments. Simultaneously, the converted heat can induce BNN-6 decomposition to generate NO, which would open the ryanodine receptor channel in the endoplasmic reticulum and allow stored Ca2+ to leak. Both in vitro and in vivo experiments demonstrated that the combination of photo-controlled Ca2+ influx and release could enable Ca2+ overload in the cytoplasm and efficiently inhibit tumor growth.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , Calcio , Fototerapia , Neoplasias/tratamiento farmacológico , Verde de Indocianina , Retículo Endoplásmico
8.
Angew Chem Int Ed Engl ; : e202416877, 2024 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-39449191

RESUMEN

Rational and effective design of a universal near-infrared (NIR) light-absorbed platform employed to prepare diverse activatable NIR fluorogenic probes for in vivo imaging and the imaging-guided tumor resection remains less exploited but highly meaningful. Herein, mandelic acid with a core structure of 4-hydroxylbenzyl alcohol to link recognition unit, a fluorophore and a quencher was employed to prepare activatable probes. We exemplified ester as carboxylesterase (CE)-recognized unit, ferrocene as quencher and phenothiazinium as NIR fluorophore to afford fluorogenic probes termed NBS-Fe-CE and NBS-C-Fe-CE. These probes enabled the conversion toward CE with significant fluorescence increases and successfully discriminate CE activity in cells. NIR light enhances the tumor penetration and enable imaging-guided orthotopic tumor resection. This specific case demonstrated that this platform can be effectively used to construct diverse NIR probes for imaging analytes in biological systems.

9.
Anal Chem ; 95(4): 2513-2522, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36683262

RESUMEN

Cell membrane transport is the first and crucial step for bioprobes to realize the diagnosis, imaging, and therapy in cells. However, during this transport, there is a trade-off between anchoring and internalization steps, which will seriously affect the membrane transport efficiency. In the past, because the interaction between probes and cell membrane is constant, this challenge is hard to solve. Here, we proposed a strategy to regulate the membrane affinity of multi-module probes that enabled probe to have strong affinity during cell membrane anchoring and weak affinity during internalization. Specifically, a multi-module probe defined as LK-M-NA was constructed, which consisted of three main parts, membrane-anchoring α-helix peptide (LK), anchoring regulator (M), and therapeutic module (NA). With the α-helix module, LK-M-NA was able to rapidly anchor on the cell membrane and the binding energy was -1450.90 kcal/mol. However, after pericellular cleavage by the highly active matrix metalloproteinase-2 , LK could be removed due to the breakage of M and the binding energy reduced to -869.95 kcal/mol. Thus, the internalization restriction caused by high affinity was relieved. Owing to the alterable affinity, the membrane transport efficiency of LK-M-NA increased to 14.58%, well addressing the trade-off problem.


Asunto(s)
Metaloproteinasa 2 de la Matriz , Péptidos , Membrana Celular , Transporte Biológico , Membranas
10.
Anal Chem ; 95(34): 12903-12912, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37594437

RESUMEN

Inducing and monitoring cell apoptosis in a real-time manner are crucial for evaluating the therapeutic effect of drugs and avoiding excessive treatment. Although promising advancements have been made to monitor cell apoptosis by assessing cell membrane integrity, the chronic compromise of cellular fitness caused by imbalance proteostasis is not visible and hard to be detected. As an indicator for cell apoptosis, imaging of aggregated proteins provides a new direction. Herein, we design a peptide-conjugated probe (QRKN) that can induce mitochondrial dysfunction for self-reporting cell apoptosis by imaging aggregated proteins. Specifically, QRKN can be cleaved into the α-helix-forming part (QRK) and azide-modified small-molecule part (N) by overexpressed cathepsin B (CB) in tumor cells. The QRK part can destroy the mitochondrial membrane and promote cytochrome c (Cyt c) efflux and caspase 3 expression. The other N part can inhibit the activity of mitochondrial complex IV (Mito-IV) and decrease the expression level of adenosine triphosphate (ATP). Two signaling pathways cooperatively induce mitochondrial dysfunction, resulting in protein aggregation and cell apoptosis ultimately. Meanwhile, the cell apoptosis process can be monitored based on QRKN, which is highly sensitive to the aggregated protein-triggered viscosity change. The self-reporting probe can monitor therapeutic responses and provide valuable diagnosis information.


Asunto(s)
Apoptosis , Péptidos , Complejo IV de Transporte de Electrones , Adenosina Trifosfato , Azidas
11.
Anal Chem ; 95(40): 15068-15077, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37767787

RESUMEN

Fluorescence imaging can improve surgical accuracy in ovarian cancer, but a high signal-to-noise ratio is crucial for tiny metastatic cancers. Meanwhile, intraoperative fluorescent surgical navigation modalities alone are still insufficient to completely remove ovarian cancer lesions, and the recurrence rate remains high. Here, we constructed a cancer-associated fibroblasts (CAFs)-mimetic aggregation-induced emission (AIE) probe to enable full-cycle management of surgery that eliminates recurrence. AIE molecules (P3-PPh3) were packed in hollow mesoporous silica nanoparticles (HMSNs) to form HMSN-probe and then coated with a CAFs membrane to prepare CAF-probe. First, due to the negative potential of the CAF-probe, the circulation time in vivo is elevated, which facilitates passive tumor targeting. Second, the CAF-probe avoids its clearance by the immune system and improves the bioavailability. Finally, the fibronectin on the CAF-probe specifically binds to integrin α-5 (ITGA5), which is highly expressed in ovarian cancer cells, enabling fluorescence imaging with a contrast of up to 8.6. CAF-probe-based fluorescence imaging is used to evaluate the size and location of ovarian cancer before surgery (preoperative evaluation), to guide tumor removal during surgery (intraoperative navigation), and to monitor tumor recurrence after surgery (postoperative monitoring), ultimately significantly improving the efficiency of surgery and completely eliminating tumor recurrence. In conclusion, we constructed a CAFs mimetic AIE probe and established a full-cycle surgical management model based on its precise imaging properties, which significantly reduced the recurrence of ovarian cancer.

12.
Chemistry ; 29(9): e202203225, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36333271

RESUMEN

The analysis and regulation of proteins are of great significance for the development of disease diagnosis and treatment. However, complicated analytical environment and complex protein structure severely limit the accuracy of their analysis results. Nowadays, ascribing to the editability and bioactivity of peptides, peptide-based probes could meet the requirements of good selectivity and high affinity to overcome the challenges. In this review, we summarize the advances in the use of modular peptide probes for proteins analysis. It focuses on how to design and optimize the structure of probes, as well as their performance. Then, the strategies and application to improve the analysis result of modular peptide probes are introduced. Finally, we also discuss current challenge and provide some ideas for the future direction for modular peptide probes, hoping to accelerate their clinical transformation.


Asunto(s)
Colorantes Fluorescentes , Péptidos , Colorantes Fluorescentes/química , Péptidos/química , Proteínas
13.
Angew Chem Int Ed Engl ; 62(43): e202309671, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37672359

RESUMEN

Nanochannel technology has emerged as a powerful tool for label-free and highly sensitive detection of protein folding/unfolding status. However, utilizing the inner walls of a nanochannel array may cause multiple events even for proteins with the same conformation, posing challenges for accurate identification. Herein, we present a platform to detect unfolded proteins through electrical and optical signals using nanochannel arrays with outer-surface probes. The detection principle relies on the specific binding between the maleimide groups in outer-surface probes and the protein cysteine thiols that induce changes in the ionic current and fluorescence intensity responses of the nanochannel array. By taking advantage of this mechanism, the platform has the ability to differentiate folded and unfolded state of proteins based on the exposure of a single cysteine thiol group. The integration of these two signals enhances the reliability and sensitivity of the identification of unfolded protein states and enables the distinction between normal cells and Huntington's disease mutant cells. This study provides an effective approach for the precise analysis of proteins with distinct conformations and holds promise for facilitating the diagnoses of protein conformation-related diseases.

14.
Anal Chem ; 94(22): 7960-7969, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35594188

RESUMEN

Before arriving at the intracellular destinations, probes might be trapped in the lysosomes, reducing the amount of cargos, which compromises the therapeutic outcomes. The current methods are based on the fact that probes enter the lysosomes and then escape from them, which do not fundamentally solve the degradation by lysosomal hydrolases. Here, an enzyme-responsive modular peptide probe named PKP that can be divided into two parts, Pal-part and KP-part, by matrix metalloproteinase-2 (MMP-2) overexpressed in tumor microenvironments is designed. Pal-part quickly enters the cells and forms nanofibers in the lysosomes, decreasing protein phosphatase 2A (PP2A), which transforms the endocytic pathway of KP-part from clathrin-mediated endocytosis (CME) into caveolae-mediated endocytosis (CvME) and allows KP-part to directly reach the mitochondria sites without passing through the lysosomes. Finally, through self-regulating intracellular delivery pathways, the mitochondrial delivery efficiency of KP-part is greatly improved, leading to an optimized image-guided therapeutic efficiency. Furthermore, this system also shows great potential for the delivery of siRNA and doxorubicin to achieve precise cancer image-guided therapy, which is expected to significantly expand its application and facilitate the development of personalized therapy.


Asunto(s)
Metaloproteinasa 2 de la Matriz , Autocontrol , Endocitosis , Lisosomas/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Péptidos/metabolismo
15.
Anal Chem ; 94(11): 4874-4880, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35276037

RESUMEN

By maintaining the telomere lengths, telomerase can make the tumor cells avoid the apoptosis, thus, achieving the cell immortalization. In the past, a series of telomerase detection systems have been developed through utilizing the unique characteristic of telomerase extended primer. However, fluctuation of telomerase activity, along with the cell cycle progression, leads to ambiguous detection results. Here, we reported a dual signal output detection strategy based on cell-cycle synchronization for precisely detecting telomerase activities by using a new AIEgen probe SSNB. Experimental and simulating calculation results demonstrated that positively charged SSNB could interact with DNA through the electrostatic interaction and π-π interaction, as well as the hydrogen bonds. The aggregation of SSNB caused by the extended template strand primer (TP) could be observed in tumor cells, thus, indicating the telomerase activity in various cell lines. Furthermore, after cell cycle synchronization, it was found that the telomerase activity in the S phase was the highest, no matter from the fluorescence intensity or the ROS generation situation. Dual signal outputs of SSNB verified the significance and necessity of cell-cycle synchronization detection for telomerase activity. This strategy could open a new window for the biotargets of which activity is variational in time dimension.


Asunto(s)
Telomerasa , Ciclo Celular , División Celular , Línea Celular , ADN/química , Telomerasa/metabolismo , Telómero/metabolismo
16.
Angew Chem Int Ed Engl ; 61(18): e202117798, 2022 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-35224832

RESUMEN

Downregulating programmed cell death ligand 1(PD-L1) protein levels in tumor cells is an effective way to achieve immune system activation for oncology treatment, but current strategies are inadequate. Here, we design a caged peptide-AIEgen probe (GCP) to self-assemble with miR-140 forming GCP/miR-140 nanoparticles. After entering tumor cells, GCP/miR-140 disassembles in the presence of Cathepsin B (CB) and releases caged GO203 peptide, miR-140 and PyTPA. Peptide decages in the highly reductive intracellular environment and binds to mucin 1 (MUC1), thereby downregulating the expression of PD-L1. Meanwhile, miR-140 reduces PD-L1 expression by targeting downregulation of PD-L1 mRNA. Under the action of PyTPA-mediated photodynamic therapy (PDT), tumor-associated antigens are released, triggering immune cell attack on tumor cells. This multiple mechanism-based strategy of deeply downregulating PD-L1 in tumor cells activates the immune system and thus achieves effective immunotherapy.


Asunto(s)
MicroARNs , Nanopartículas , Antígeno B7-H1/genética , Línea Celular Tumoral , Regulación hacia Abajo , Inmunoterapia , MicroARNs/genética , Péptidos/metabolismo
17.
Anal Chem ; 93(42): 14036-14041, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34633790

RESUMEN

Utilizing ionic current and fluorescent dual-signal-output nanochannels to achieve the detection of specific target species has received much attention. The introduction of an optical signal could not only improve the selectivity of the detection systems, but also make it possible to observe the reduction of the ionic current that originated from stimulus-triggered nanochannel changes. However, the resolution of an optical signal can only verify issues of the presence or absence and cannot precisely analyze the detailed chemical structural changes within nanochannels. Here, we employed a biocompatible condensation reaction between 2-cyanobenzothiazole (CBT) and d-cysteine, and synthesized molecules PCTC that can be polymerized by cutting off short peptide sequences in the presence of furin to realize the detection of furin with multiple signal outputs. Through the introduction of a UV light-sensitive DNA sequence to the capture probes (CPs) inside the nanochannels, the blocking of the nanochannels can be confirmed to the formed oligomers by mass spectrometry analysis.


Asunto(s)
Furina , Transporte Iónico
18.
Anal Chem ; 93(48): 16257-16263, 2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34809422

RESUMEN

Determining the expression level of biomarkers is crucial for disease diagnosis. However, the low abundance of biomarkers in the early stage makes the detection extremely difficult by traditional aggregation-induced emission (AIE)-based fluorescent probes. Here, by tuning the intermolecular interaction, a two steps-based MP/NPs-SLIPS sensing system is designed for ultrasensitive detection of the tumor marker matrix metalloproteinase-2 (MMP-2). During the sensing process, aggregation of AIE residual could be intensified through the electrostatic absorption by negatively charged nanoparticles (NPs), as well as the confined space formed by the self-assembly of NPs to photonic crystals (PCs) on slippery lubricant-infused porous substrates (SLIPS). The fluorescent signals obviously increased with a strengthened aggregation degree, which contributes to improved sensitivity. Thus, the limit of detection is decreased to 3.7 ng/mL for MP/NPs-SLIPS sensing system, which could be used for detecting the MMP-2 secreted by tumor cells directly. This strategy also demonstrated its potential applications as high-throughput detection devices and will be of significance for the ultrasensitive analysis of biomarkers.


Asunto(s)
Metaloproteinasa 2 de la Matriz , Nanopartículas , Biomarcadores de Tumor , Colorantes Fluorescentes , Péptidos
19.
Angew Chem Int Ed Engl ; 60(33): 18280-18288, 2021 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-34081387

RESUMEN

To overcome a series of challenges in tumor therapy, modular-agent probes (MAPs) comprised of various functional modules have been proposed. Researchers have tried to optimize the MAPs by exploiting the new modules or increasing the numbers of module, while neglecting the configuration of various modules. Here, we focus on the different spatial arrangements of existing modules. By utilizing a tetraphenylethylene (TPE) derivative with stereochemical structure and dual modifiable end-group sites as small molecule scaffold, two MAPs with same modular agents (module T for enhancing the internalization of MAPs by tumor cells and module M for causing mitochondrial dysfunction) but different spatial arrangements (on the one side, TM-AIE, and two sides, T-AIE-M, of the molecule scaffold) are designed. T-AIE-M with larger RGD binding angle performed higher specificity, while TM-AIE characterizing longer α-helix structure displayed superior toxicity.


Asunto(s)
Colorantes Fluorescentes/química , Imagen Óptica , Estilbenos/química , Células HeLa , Humanos , Estructura Molecular
20.
Zhongguo Dang Dai Er Ke Za Zhi ; 23(12): 1289-1294, 2021 Dec 15.
Artículo en Inglés, Zh | MEDLINE | ID: mdl-34911615

RESUMEN

OBJECTIVES: To study the role of the low-density lipoprotein receptor-related protein 1 (LRP1)-proline-rich tyrosine kinase 2 phosphorylation (pPyk2)-matrix metalloproteinases 9 (MMP9) pathway in hyperoxia-induced lung injury in neonatal rats. METHODS: A total of 16 neonatal rats were randomly placed in chambers containing room air (air group) or 95% medical oxygen (hyperoxia group) immediately after birth, with 8 rats in each group. All of the rats were sacrificed on day 8 of life. Hematoxylin and eosin staining was used to observe the pathological changes of lung tissue. ELISA was used to measure the levels of soluble LRP1 (sLRP1) and MMP9 in serum and bronchoalveolar lavage fluid (BALF). Western blot was used to measure the protein expression levels of LRP1, MMP9, Pyk2, and pPyk2 in lung tissue. RT-PCR was used to measure the mRNA expression levels of LRP1 and MMP9 in lung tissue. RESULTS: The hyperoxia group had significantly higher levels of sLRP1 and MMP9 in serum and BALF than the air group (P<0.05). Compared with the air group, the hyperoxia group had significant increases in the protein expression levels of LRP1, MMP9, and pPyk2 in lung tissue (P<0.05). The hyperoxia group had significantly higher relative mRNA expression levels of LRP1 and MMP9 in lung tissue than the air group (P<0.05). CONCLUSIONS: The activation of the LRP1-pPyk2-MMP9 pathway is enhanced in hyperoxia-induced lung injury in neonatal rats, which may be involved in the pathogenesis of bronchopulmonary dysplasia.


Asunto(s)
Hiperoxia , Lesión Pulmonar , Animales , Animales Recién Nacidos , Hiperoxia/complicaciones , Pulmón , Lesión Pulmonar/etiología , Metaloproteinasa 9 de la Matriz/genética , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA