Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nature ; 539(7628): 242-247, 2016 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-27830782

RESUMEN

Sensory stimuli drive the maturation and function of the mammalian nervous system in part through the activation of gene expression networks that regulate synapse development and plasticity. These networks have primarily been studied in mice, and it is not known whether there are species- or clade-specific activity-regulated genes that control features of brain development and function. Here we use transcriptional profiling of human fetal brain cultures to identify an activity-dependent secreted factor, Osteocrin (OSTN), that is induced by membrane depolarization of human but not mouse neurons. We find that OSTN has been repurposed in primates through the evolutionary acquisition of DNA regulatory elements that bind the activity-regulated transcription factor MEF2. In addition, we demonstrate that OSTN is expressed in primate neocortex and restricts activity-dependent dendritic growth in human neurons. These findings suggest that, in response to sensory input, OSTN regulates features of neuronal structure and function that are unique to primates.


Asunto(s)
Evolución Molecular , Proteínas Musculares/metabolismo , Neocórtex/metabolismo , Neuronas/metabolismo , Factores de Transcripción/metabolismo , Transcriptoma , Animales , Secuencia de Bases , Huesos/metabolismo , Dendritas/metabolismo , Elementos de Facilitación Genéticos/genética , Femenino , Humanos , Factores de Transcripción MEF2/metabolismo , Macaca mulatta , Masculino , Ratones , Datos de Secuencia Molecular , Proteínas Musculares/genética , Músculos/metabolismo , Neocórtex/citología , Neuronas/citología , Especificidad de Órganos , Especificidad de la Especie , Factores de Transcripción/genética
2.
Nature ; 499(7458): 341-5, 2013 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-23770587

RESUMEN

Rett syndrome (RTT) is an X-linked human neurodevelopmental disorder with features of autism and severe neurological dysfunction in females. RTT is caused by mutations in methyl-CpG-binding protein 2 (MeCP2), a nuclear protein that, in neurons, regulates transcription, is expressed at high levels similar to that of histones, and binds to methylated cytosines broadly across the genome. By phosphotryptic mapping, we identify three sites (S86, S274 and T308) of activity-dependent MeCP2 phosphorylation. Phosphorylation of these sites is differentially induced by neuronal activity, brain-derived neurotrophic factor, or agents that elevate the intracellular level of 3',5'-cyclic AMP (cAMP), indicating that MeCP2 may function as an epigenetic regulator of gene expression that integrates diverse signals from the environment. Here we show that the phosphorylation of T308 blocks the interaction of the repressor domain of MeCP2 with the nuclear receptor co-repressor (NCoR) complex and suppresses the ability of MeCP2 to repress transcription. In knock-in mice bearing the common human RTT missense mutation R306C, neuronal activity fails to induce MeCP2 T308 phosphorylation, suggesting that the loss of T308 phosphorylation might contribute to RTT. Consistent with this possibility, the mutation of MeCP2 T308A in mice leads to a decrease in the induction of a subset of activity-regulated genes and to RTT-like symptoms. These findings indicate that the activity-dependent phosphorylation of MeCP2 at T308 regulates the interaction of MeCP2 with the NCoR complex, and that RTT in humans may be due, in part, to the loss of activity-dependent MeCP2 T308 phosphorylation and a disruption of the phosphorylation-regulated interaction of MeCP2 with the NCoR complex.


Asunto(s)
Proteínas Co-Represoras/metabolismo , Proteína 2 de Unión a Metil-CpG/metabolismo , Treonina/metabolismo , Animales , Células Cultivadas , Humanos , Proteína 2 de Unión a Metil-CpG/química , Proteína 2 de Unión a Metil-CpG/genética , Ratones , Mutación , Neuronas/metabolismo , Fosforilación , Síndrome de Rett/genética , Transcripción Genética
3.
Nature ; 455(7217): 1198-204, 2008 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-18815592

RESUMEN

Neuronal activity regulates the development and maturation of excitatory and inhibitory synapses in the mammalian brain. Several recent studies have identified signalling networks within neurons that control excitatory synapse development. However, less is known about the molecular mechanisms that regulate the activity-dependent development of GABA (gamma-aminobutyric acid)-releasing inhibitory synapses. Here we report the identification of a transcription factor, Npas4, that plays a role in the development of inhibitory synapses by regulating the expression of activity-dependent genes, which in turn control the number of GABA-releasing synapses that form on excitatory neurons. These findings demonstrate that the activity-dependent gene program regulates inhibitory synapse development, and suggest a new role for this program in controlling the homeostatic balance between synaptic excitation and inhibition.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Sinapsis/metabolismo , Factores de Transcripción/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Células Cultivadas , Electrofisiología , Regulación de la Expresión Génica , Hipocampo/citología , Ratones , Neuronas/metabolismo , Ratas , Factores de Transcripción/genética , Transfección , Ácido gamma-Aminobutírico/metabolismo
4.
Cell Rep ; 29(7): 2001-2015.e5, 2019 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-31722213

RESUMEN

Compensation among paralogous transcription factors (TFs) confers genetic robustness of cellular processes, but how TFs dynamically respond to paralog depletion on a genome-wide scale in vivo remains incompletely understood. Using single and double conditional knockout of myocyte enhancer factor 2 (MEF2) family TFs in granule neurons of the mouse cerebellum, we find that MEF2A and MEF2D play functionally redundant roles in cerebellar-dependent motor learning. Although both TFs are highly expressed in granule neurons, transcriptomic analyses show MEF2D is the predominant genomic regulator of gene expression in vivo. Strikingly, genome-wide occupancy analyses reveal upon depletion of MEF2D, MEF2A occupancy robustly increases at a subset of sites normally bound to MEF2D. Importantly, sites experiencing compensatory MEF2A occupancy are concentrated within open chromatin and undergo functional compensation for genomic activation and gene expression. Finally, motor activity induces a switch from non-compensatory to compensatory MEF2-dependent gene regulation. These studies uncover genome-wide functional interdependency between paralogous TFs in the brain.


Asunto(s)
Cerebelo/metabolismo , Cromatina/metabolismo , Regulación de la Expresión Génica , Neuronas/metabolismo , Animales , Cerebelo/citología , Cromatina/genética , Estudio de Asociación del Genoma Completo , Factores de Transcripción MEF2/genética , Factores de Transcripción MEF2/metabolismo , Ratones , Neuronas/citología
5.
Neuron ; 34(2): 221-33, 2002 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-11970864

RESUMEN

The transcription factor CREB mediates diverse responses in the nervous system. It is not known how CREB induces specific patterns of gene expression in response to different extracellular stimuli. We find that Ca(2+) influx into neurons induces CREB phosphorylation at Ser133 and two additional sites, Ser142 and Ser143. While CREB Ser133 phosphorylation is induced by many stimuli, phosphorylation at Ser142 and Ser143 is selectively activated by Ca(2+) influx. The triple phosphorylation of CREB is required for effective Ca(2+) stimulation of CREB-dependent transcription, but the phosphorylation of Ser142 and Ser143, in addition to Ser133, disrupts the interaction of CREB with its cofactor CBP. These results suggest that Ca(2+) influx triggers a specific program of gene expression in neurons by selectively regulating CREB phosphorylation.


Asunto(s)
Calcio/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Neuronas/metabolismo , Secuencia de Aminoácidos/genética , Proteína de Unión a CREB , Células Cultivadas , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Electrofisiología , Inmunohistoquímica , Neuronas/fisiología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/fisiología , Fosforilación , Transactivadores/genética , Transactivadores/metabolismo , Transactivadores/fisiología , Transcripción Genética/fisiología
6.
Elife ; 62017 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-28885975

RESUMEN

Wnt5a-Ror signaling constitutes a developmental pathway crucial for embryonic tissue morphogenesis, reproduction and adult tissue regeneration, yet the molecular mechanisms by which the Wnt5a-Ror pathway mediates these processes are largely unknown. Using a proteomic screen, we identify the kinesin superfamily protein Kif26b as a downstream target of the Wnt5a-Ror pathway. Wnt5a-Ror, through a process independent of the canonical Wnt/ß-catenin-dependent pathway, regulates the cellular stability of Kif26b by inducing its degradation via the ubiquitin-proteasome system. Through this mechanism, Kif26b modulates the migratory behavior of cultured mesenchymal cells in a Wnt5a-dependent manner. Genetic perturbation of Kif26b function in vivo caused embryonic axis malformations and depletion of primordial germ cells in the developing gonad, two phenotypes characteristic of disrupted Wnt5a-Ror signaling. These findings indicate that Kif26b links Wnt5a-Ror signaling to the control of morphogenetic cell and tissue behaviors in vertebrates and reveal a new role for regulated proteolysis in noncanonical Wnt5a-Ror signal transduction.


Asunto(s)
Cinesinas/metabolismo , Transducción de Señal , Proteína Wnt-5a/metabolismo , Animales , Línea Celular , Desarrollo Embrionario/fisiología , Regulación del Desarrollo de la Expresión Génica , Células HEK293 , Humanos , Cinesinas/genética , Ratones , Ratones Endogámicos C57BL , Morfogénesis/efectos de los fármacos , Proteómica , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/genética , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/metabolismo , Vía de Señalización Wnt , Proteína Wnt-5a/farmacología , beta Catenina/metabolismo
7.
Science ; 311(5763): 1008-12, 2006 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-16484497

RESUMEN

In the mammalian nervous system, neuronal activity regulates the strength and number of synapses formed. The genetic program that coordinates this process is poorly understood. We show that myocyte enhancer factor 2 (MEF2) transcription factors suppressed excitatory synapse number in a neuronal activity- and calcineurin-dependent manner as hippocampal neurons formed synapses. In response to increased neuronal activity, calcium influx into neurons induced the activation of the calcium/calmodulin-regulated phosphatase calcineurin, which dephosphorylated and activated MEF2. When activated, MEF2 promoted the transcription of a set of genes, including arc and synGAP, that restrict synapse number. These findings define an activity-dependent transcriptional program that may control synapse number during development.


Asunto(s)
Hipocampo/fisiología , Factores Reguladores Miogénicos/fisiología , Neuronas/fisiología , Sinapsis/fisiología , Animales , Calcineurina/metabolismo , Calcio/metabolismo , Células Cultivadas , Proteínas del Citoesqueleto/genética , Dendritas/fisiología , Dendritas/ultraestructura , Potenciales Postsinápticos Excitadores , Proteínas Activadoras de GTPasa/genética , Regulación de la Expresión Génica , Ácido Glutámico/metabolismo , Hipocampo/citología , Factores de Transcripción MEF2 , Mutación , Factores Reguladores Miogénicos/genética , Proteínas del Tejido Nervioso/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Fosforilación , Interferencia de ARN , Ratas , Ratas Long-Evans , Proteínas Recombinantes de Fusión/metabolismo , Transmisión Sináptica , Transcripción Genética , Transfección
8.
Science ; 303(5666): 2011-5, 2004 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-14976264

RESUMEN

The Sir2 deacetylase modulates organismal life-span in various species. However, the molecular mechanisms by which Sir2 increases longevity are largely unknown. We show that in mammalian cells, the Sir2 homolog SIRT1 appears to control the cellular response to stress by regulating the FOXO family of Forkhead transcription factors, a family of proteins that function as sensors of the insulin signaling pathway and as regulators of organismal longevity. SIRT1 and the FOXO transcription factor FOXO3 formed a complex in cells in response to oxidative stress, and SIRT1 deacetylated FOXO3 in vitro and within cells. SIRT1 had a dual effect on FOXO3 function: SIRT1 increased FOXO3's ability to induce cell cycle arrest and resistance to oxidative stress but inhibited FOXO3's ability to induce cell death. Thus, one way in which members of the Sir2 family of proteins may increase organismal longevity is by tipping FOXO-dependent responses away from apoptosis and toward stress resistance.


Asunto(s)
Histona Desacetilasas/metabolismo , Estrés Oxidativo , Sirtuinas/metabolismo , Factores de Transcripción/metabolismo , Acetilación , Animales , Apoptosis , Ciclo Celular , Línea Celular , Núcleo Celular/metabolismo , Células Cultivadas , Cerebelo/citología , Proteína Forkhead Box O3 , Factores de Transcripción Forkhead , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Histona Desacetilasas/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular , Ratones , Ratones Noqueados , Neuronas/citología , Fosforilación , Proteínas/genética , Proteínas Recombinantes/metabolismo , Sirtuina 1 , Sirtuinas/genética , Factores de Transcripción/genética , Transcripción Genética , Proteinas GADD45
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA