Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
PLoS Biol ; 21(8): e3002247, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37590302

RESUMEN

Mitochondria are in a constant balance of fusion and fission. Excessive fission or deficient fusion leads to mitochondrial fragmentation, causing mitochondrial dysfunction and physiological disorders. How the cell prevents excessive fission of mitochondria is not well understood. Here, we report that the fission yeast AAA-ATPase Yta4, which is the homolog of budding yeast Msp1 responsible for clearing mistargeted tail-anchored (TA) proteins on mitochondria, plays a critical role in preventing excessive mitochondrial fission. The absence of Yta4 leads to mild mitochondrial fragmentation in a Dnm1-dependent manner but severe mitochondrial fragmentation upon induction of mitochondrial depolarization. Overexpression of Yta4 delocalizes the receptor proteins of Dnm1, i.e., Fis1 (a TA protein) and Mdv1 (the bridging protein between Fis1 and Dnm1), from mitochondria and reduces the localization of Dnm1 to mitochondria. The effect of Yta4 overexpression on Fis1 and Mdv1, but not Dnm1, depends on the ATPase and translocase activities of Yta4. Moreover, Yta4 interacts with Dnm1, Mdv1, and Fis1. In addition, Yta4 competes with Dnm1 for binding Mdv1 and decreases the affinity of Dnm1 for GTP and inhibits Dnm1 assembly in vitro. These findings suggest a model, in which Yta4 inhibits mitochondrial fission by inhibiting the function of the mitochondrial divisome composed of Fis1, Mdv1, and Dnm1. Therefore, the present work reveals an uncharacterized molecular mechanism underlying the inhibition of mitochondrial fission.


Asunto(s)
Demencia Frontotemporal , Schizosaccharomyces , Humanos , ATPasas Asociadas con Actividades Celulares Diversas/genética , Dinámicas Mitocondriales , Adenosina Trifosfatasas , Mitocondrias , Schizosaccharomyces/genética
2.
Brain Behav ; 13(12): e3290, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37908045

RESUMEN

INTRODUCTION: Sotos syndrome (SS) is an overgrowth disease characterized by distinctive facial features, advanced bone age, macrocephaly, and developmental delay is associated with alterations in the NSD1 gene. Here, we report a case of a 4-year-old female child with SS caused by NSD1 gene nonsense mutation. METHODS: Whole-exome sequencing (WES) was applied for probands and her parents. Sanger sequencing was used to confirm the mutation. We performed the literature review using PubMed and found 12 articles and 14 patients who presented with SS. RESULTS: The patient showed typical facial features of SS, hand deformities, and seizure. WES revealed de novo heterozygous variant: NSD1 (NM_022455.5), c.6095G > A, p.TRP2032*. We also reviewed the phenotype spectrum of 14 patients with SS, who exhibited a variety of clinical phenotypes, including developmental delay, seizures, scoliosis, hearing loss, cardiac and urinary system abnormalities, and so on. DISCUSSION: The lack of correlation between mutation sites or types and phenotypes was summarized by literature reviewing. The NSD1 protein contains 14 functional domains and this nonsense mutation was located in SET domain. Early appearance of the termination codon leads to protein truncation. Haploinsufficiency of the NSD1 gene causes the overgrowth disorders.


Asunto(s)
Síndrome de Sotos , Preescolar , Femenino , Humanos , Codón sin Sentido , Histona Metiltransferasas/genética , N-Metiltransferasa de Histona-Lisina/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Mutación , Proteínas Nucleares/genética , Convulsiones/etiología , Síndrome de Sotos/complicaciones , Síndrome de Sotos/genética
3.
Stem Cell Res Ther ; 12(1): 195, 2021 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-33743805

RESUMEN

BACKGROUND: Propofol can have adverse effects on developing neurons, leading to cognitive disorders, but the mechanism of such an effect remains elusive. Here, we aimed to investigate the effect of propofol on neuronal development in zebrafish and to identify the molecular mechanism(s) involved in this pathway. METHODS: The effect of propofol on neuronal development was demonstrated by a series of in vitro and in vivo experiments. mRNA injections, whole-mount in situ hybridization and immunohistochemistry, quantitative real-time polymerase chain reaction, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling, 5-ethynyl-2'-deoxyuridine labeling, co-immunoprecipitation, and acyl-biotin exchange labeling were used to identify the potential mechanisms of propofol-mediated zisp expression and determine its effect on the specification of retinal cell types. RESULTS: Propofol impaired the specification of retinal cell types, thereby inhibiting neuronal and glial cell formation in retinas, mainly through the inhibition of Zisp expression. Furthermore, Zisp promoted the stabilization and secretion of a soluble form of the membrane-associated protein Noggin-1, a specific palmitoylation substrate. CONCLUSIONS: Propofol caused a severe phenotype during neuronal development in zebrafish. Our findings established a direct link between an anesthetic agent and protein palmitoylation in the regulation of neuronal development. This could be used to investigate the mechanisms via which the improper use of propofol might result in neuronal defects.


Asunto(s)
Propofol , Animales , Apoptosis , Etiquetado Corte-Fin in Situ , Lipoilación , Neuronas , Propofol/farmacología , Retina , Pez Cebra/genética
4.
Materials (Basel) ; 14(14)2021 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-34300698

RESUMEN

The fabrics with electromagnetic interference (EMI) have been used in various fields. However, most studies related to the EMI fabrics focused on the improvement of the final electromagnetic shielding effectiveness (EM SE) by adjusting the preparation parameters while the breathability of the EMI fabrics was affected and the visible surficial patterns on the EMI fabric was limited. In this work, the two samples based on the Song Brocade structure were fabricated with surficial visible pattern ''. One was fabricated with silver-plated polyamide (Ag-PA) yarns and the silk yarns, the another with polyester (PET) yarns and the silk yarns. The weaving structure of the two samples were investigated by scanning electronic microscopy (SEM) and laser optical microscopy (LOM). The resistance against the EM radiation near field communication (NFC) and the ultraviolet (UV) light was also evaluated. Besides, the surface resistance, the air permeability and the water evaporation rate were investigated. The results revealed that the '' appeared successfully on the surface of the two samples with stable weaving structure. The Ag-PA yarn-incorporated Song Brocade fabric had the EMI shielding effectiveness value around 50 dB, which was supported by the low surface resistance less than 40 Ω. The excellent NFC shielding of the Ag-PA yarn-incorporated Song Brocade was also found. The ultraviolet protection factor (UPF) value of the Ag-PA yarn-incorporated Song Brocade fabric was higher than 190. The air permeability and the evaporation rate of the Ag-PA yarn-incorporated Song Brocade fabric was higher than 99 mm/s, and 1.4 g/h, respectively. As a result, the Ag-PA yarn-incorporated Song Brocade fabrics were proposed for both the personal and the industrial scale utilization.

5.
Stem Cell Res Ther ; 12(1): 107, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33541421

RESUMEN

BACKGROUND: A large number of preclinical studies have shown that local anesthetics have a direct inhibitory effect on tumor biological activities, including cell survival, proliferation, migration, and invasion. There are few studies on the role of local anesthetics in cancer stem cells. This study aimed to determine the possible role of local anesthetics in glioblastoma stem cell (GSC) self-renewal and the underlying molecular mechanisms. METHODS: The effects of local anesthetics in GSCs were investigated through in vitro and in vivo assays (i.e., Cell Counting Kit 8, spheroidal formation assay, double immunofluorescence, western blot, and xenograft model). The acyl-biotin exchange method (ABE) assay was identified proteins that are S-acylated by zinc finger Asp-His-His-Cys-type palmitoyltransferase 15 (ZDHHC15). Western blot, co-immunoprecipitation, and liquid chromatograph mass spectrometer-mass spectrometry assays were used to explore the mechanisms of ZDHHC15 in effects of local anesthetics in GSCs. RESULTS: In this study, we identified a novel mechanism through which local anesthetics can damage the malignant phenotype of glioma. We found that local anesthetics prilocaine, lidocaine, procaine, and ropivacaine can impair the survival and self-renewal of GSCs, especially the classic glioblastoma subtype. These findings suggest that local anesthetics may weaken ZDHHC15 transcripts and decrease GP130 palmitoylation levels and membrane localization, thus inhibiting the activation of IL-6/STAT3 signaling. CONCLUSIONS: In conclusion, our work emphasizes that ZDHHC15 is a candidate therapeutic target, and local anesthetics are potential therapeutic options for glioblastoma.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Anestésicos Locales/farmacología , Línea Celular Tumoral , Proliferación Celular , Receptor gp130 de Citocinas/metabolismo , Proteínas de Unión al ADN , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Humanos , Lipoilación , Células Madre Neoplásicas/metabolismo
6.
Oncol Rep ; 44(2): 674-684, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32468064

RESUMEN

Tumor angiogenesis is a hallmark of liver cancer and is necessary for tumor growth and progression. Supervillin (SVIL) is highly expressed and implicated in several malignant processes of liver cancer. However, the functional relationships between SVIL and tumor angiogenesis in liver cancer have not yet been fully elucidated. The present study was based on bioinformatics analysis, patient tissue sample detection, three­dimensional simulated blood vessel formation, a series of cytological experiments and mouse models. The results demonstrated the important role of SVIL in the progression of malignant liver cancer and tumor angiogenesis, both in terms of vasculogenic mimicry (VM) and endothelium­dependent vessel (EDV) development. SVIL knockdown inhibited VM formation and induced tumor cell apoptosis via the VEGF­p38 signaling axis and through various VM­associated transcriptional factors, including vascular endothelial­cadherin, matrix metalloproteinase 9/12 and migration­inducing protein 7. SVIL may therefore be considered a potential tumor vascular biomarker and a promising therapeutic target for patients with liver cancer.


Asunto(s)
Neoplasias Hepáticas/irrigación sanguínea , Neoplasias Hepáticas/patología , Proteínas de la Membrana/genética , Proteínas de Microfilamentos/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Movimiento Celular , Supervivencia Celular , Regulación Neoplásica de la Expresión Génica , Células Hep G2 , Células Endoteliales de la Vena Umbilical Humana , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Sistema de Señalización de MAP Quinasas , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Proteínas de Microfilamentos/metabolismo , Trasplante de Neoplasias , Regulación hacia Arriba
7.
Sci Rep ; 10(1): 15495, 2020 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-32968155

RESUMEN

Glioblastoma (GBM) is associated with an increasing mortality and morbidity and is considered as an aggressive brain tumor. Recently, extensive studies have been carried out to examine the molecular biology of GBM, and the progression of GBM has been suggested to be correlated with the tumor immunophenotype in a variety of studies. Samples in the current study were extracted from the ImmPort and TCGA databases to identify immune-related genes affecting GBM prognosis. A total of 92 immune-related genes displaying a significant correlation with prognosis were mined, and a shrinkage estimate was conducted on them. Among them, the 14 most representative genes showed a marked correlation with patient prognosis, and LASSO and stepwise regression analysis was carried out to further identify the genes for the construction of a predictive GBM prognosis model. Then, samples in training and test cohorts were incorporated into the model and divided to evaluate the efficiency, stability, and accuracy of the model to predict and classify the prognosis of patients and to identify the relevant immune features according to the median value of RiskScore (namely, Risk-H and Risk-L). In addition, the constructed model was able to instruct clinicians in diagnosis and prognosis prediction for various immunophenotypes.


Asunto(s)
Neoplasias Encefálicas/genética , Glioblastoma/genética , Inmunidad/genética , Biomarcadores de Tumor/genética , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/mortalidad , Femenino , Genes/genética , Glioblastoma/diagnóstico , Glioblastoma/inmunología , Glioblastoma/mortalidad , Humanos , Estimación de Kaplan-Meier , Masculino , Pronóstico , Factores de Riesgo , Análisis de Supervivencia
8.
Mol Ther Oncolytics ; 17: 518-530, 2020 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-33024813

RESUMEN

Glioblastoma multiforme (GBM) almost invariably acquires an invasive phenotype, resulting in limited therapeutic options. Protein palmitoylation markedly affects tumorigenesis and malignant progression in GBM. The role of protein palmitoylation in GBM, however, has not been systematically reported. This study aimed to investigate the effect of protein palmitoylation on GBM cell survival and the cell cycle. In this study, most palmitoyltransferases were upregulated in GBM and its cell lines, and protein palmitoylation participated in signaling pathways controlling cell survival and the GBM cell cycle. Inhibition of protein palmitoylation with substrate-analog inhibitors, that is, 2-bromopalmitate, cerulenin, and tunicamycin, induced G2 cell cycle arrest and cell death in GBM cells through enhanced endoplasmic reticulum (ER) stress. These effects are primarily attributed to the palmitoylation inhibitors activating pro-apoptotic pathways and ER stress signals. Further analysis revealed was the accumulation of SUMOylated XBP1 (X-box binding protein 1) and its transcriptional repression, along with a reduction in XBP1 palmitoylation. Taken together, the present results indicate that protein palmitoylation plays an important role in the survival of GBM cells, further providing a potential therapeutic strategy for GBM.

9.
Cancer Gene Ther ; 27(9): 702-714, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-31619751

RESUMEN

DNA methylation is an important regulator of gene expression, and plays a significant role in carcinogenesis in the brain. Here, we explored specific prognosis-subtypes based on DNA methylation status using 138 Glioblastoma Multiforme (GBM) samples from The Cancer Genome Atlas (TCGA) database. The methylation profiles of 11,637 CpG sites that significantly correlated with survival in the training set were employed for consensus clustering. We identified three GBM molecular subtypes, and their survival curves were distinct from each other. Furthermore, ten feature CpG sites were obtained on conducting a weighted gene co-expression network analysis (WGCNA) of the CpG sites. We were able to classify the samples into high- and low-methylation groups, and classified the prognosis information of the samples after cluster analysis of the training set samples using the hierarchical clustering algorithm. Similar results were obtained in the test set and clinical GBM specimens. Finally, we found that a positive relationship existed between methylation level and sensitivity to temozolomide (or radiotherapy) or anti-migration ability of GBM cells. Taken together, these results suggest that the model constructed in this study could help explain the heterogeneity of previous molecular subgroups in GBM and can provide guidance to clinicians regarding the prognosis of GBM.


Asunto(s)
Neoplasias Encefálicas/genética , Metilación de ADN/genética , Glioblastoma/genética , Neoplasias Encefálicas/mortalidad , Femenino , Glioblastoma/mortalidad , Humanos , Masculino , Pronóstico , Análisis de Supervivencia
10.
Theranostics ; 10(3): 998-1015, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31938047

RESUMEN

Rationale: Glioblastoma multiforme (GBM) almost invariably gain invasive phenotype with limited therapeutic strategy and ill-defined mechanism. By studying the aberrant expression landscape of gliomas, we find significant up-regulation of p-MAPK level in GBM and a potent independent prognostic marker for overall survival. DHHC family was generally expressed in glioma and closely related to the activation of MAPK signaling pathway, but its role and clinical significance in GBM development and malignant progression are yet to be determined. Method: Bioinformatics analysis, western blotting and immunohistochemistry (IHC) were performed to detect the expression of ZDHHC17 in GBM. The biological function of ZDHHC17 was demonstrated by a series of in vitro and in vivo experiments. Pharmacological treatment, flow cytometry, Transwell migration assay, Co- Immunoprecipitation and GST pulldown were carried out to demonstrate the potential mechanisms of ZDHHC17. Results: ZDHHC17 is up-regulated and coordinated with MAPK activation in GBM. Mechanistically, ZDHHC17 interacts with MAP2K4 and p38/JNK to build a signaling module for MAPK activation and malignant progression. Notably, the ZDHHC17-MAP2K4-JNK/p38 signaling module contributes to GBM development and malignant progression by promoting GBM cell tumorigenicity and glioma stem cell (GSC) self-renewal. Moreover, we identify a small molecule, genistein, as a specific inhibitor to disrupt ZDHHC17-MAP2K4 complex formation for GBM cell proliferation and GSC self-renewal. Moreover, genistein, identified herein as a lead candidate for ZDHHC17-MAP2K4 inhibition, demonstrated potential therapeutic effect in patients with ZDHHC17-expressing GBM. Conclusions: Our study identified disruption of a previously unrecognized signaling module as a target strategy for GBM treatment, and provided direct evidence of the efficacy of its inhibition in glioma using a specific inhibitor.


Asunto(s)
Aciltransferasas/fisiología , Proteínas Adaptadoras Transductoras de Señales/fisiología , Glioblastoma/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , MAP Quinasa Quinasa 4/metabolismo , Proteínas del Tejido Nervioso/fisiología , Animales , Línea Celular Tumoral , Proliferación Celular , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Sistema de Señalización de MAP Quinasas , Ratones , Ratones Endogámicos C57BL , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA