Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Chem Inf Model ; 62(22): 5321-5328, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-36108142

RESUMEN

Molecular structures are commonly depicted in 2D printed forms in scientific documents such as journal papers and patents. However, these 2D depictions are not machine readable. Due to a backlog of decades and an increasing amount of printed literatures, there is a high demand for translating printed depictions into machine-readable formats, which is known as Optical Chemical Structure Recognition (OCSR). Most OCSR systems developed over the last three decades use a rule-based approach, which vectorizes the depiction based on the interpretation of vectors and nodes as bonds and atoms. Here, we present a practical software called MolMiner, which is primarily built using deep neural networks originally developed for semantic segmentation and object detection to recognize atom and bond elements from documents. These recognized elements can be easily connected as a molecular graph with a distance-based construction algorithm. MolMiner gave state-of-the-art performance on four benchmark data sets and a self-collected external data set from scientific papers. As MolMiner performed similarly well in real-world OCSR tasks with a user-friendly interface, it is a useful and valuable tool for daily applications. The free download links of Mac and Windows versions are available at https://github.com/iipharma/pharmamind-molminer.


Asunto(s)
Algoritmos , Programas Informáticos , Estructura Molecular , Redes Neurales de la Computación
2.
Nucleic Acids Res ; 46(W1): W374-W379, 2018 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-29750256

RESUMEN

CavityPlus is a web server that offers protein cavity detection and various functional analyses. Using protein three-dimensional structural information as the input, CavityPlus applies CAVITY to detect potential binding sites on the surface of a given protein structure and rank them based on ligandability and druggability scores. These potential binding sites can be further analysed using three submodules, CavPharmer, CorrSite, and CovCys. CavPharmer uses a receptor-based pharmacophore modelling program, Pocket, to automatically extract pharmacophore features within cavities. CorrSite identifies potential allosteric ligand-binding sites based on motion correlation analyses between cavities. CovCys automatically detects druggable cysteine residues, which is especially useful to identify novel binding sites for designing covalent allosteric ligands. Overall, CavityPlus provides an integrated platform for analysing comprehensive properties of protein binding cavities. Such analyses are useful for many aspects of drug design and discovery, including target selection and identification, virtual screening, de novo drug design, and allosteric and covalent-binding drug design. The CavityPlus web server is freely available at http://repharma.pku.edu.cn/cavityplus or http://www.pkumdl.cn/cavityplus.


Asunto(s)
Internet , Proteínas/química , Programas Informáticos , Sitio Alostérico , Sitios de Unión/genética , Fenómenos Biofísicos , Ligandos , Unión Proteica/genética , Conformación Proteica , Proteínas/genética
3.
Biochem Biophys Res Commun ; 478(3): 1268-73, 2016 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-27553277

RESUMEN

The covalent modification of intrinsically nucleophilic cysteine in proteins is crucial for diverse biochemical events. Bioinformatics approaches may prove useful in the design and discovery of covalent molecules targeting the cysteine in proteins to tune their functions and activities. Herein, we describe the Cysteinome, the first online database that provides a rich resource for the display, search and analysis of structure, function and related annotation for proteins with targetable cysteine as well as their covalent modulators. To this end, Cysteinome compiles 462 proteins with targetable cysteine from 122 different species along with 1217 covalent modulators curated from existing literatures. Proteins are annotated with a detailed description of protein families, biological process and related diseases. In addition, covalent modulators are carefully annotated with chemical name, chemical structure, binding affinity, physicochemical properties, molecule type and related diseases etc. The Cysteinome database may serve as a useful platform for the identification of crucial proteins with targetable cysteine in certain cellular context. Furthermore, it may help biologists and chemists for the design and discovery of covalent chemical probes or inhibitors homing at functional cysteine of critical protein targets implicated in various physiological or disease process. The Cysteinome database is freely available to public at http://www.cysteinome.org/.


Asunto(s)
Cisteína/antagonistas & inhibidores , Cisteína/metabolismo , Bases de Datos de Proteínas , Metaboloma , Cisteína/química , Internet
4.
Front Genet ; 9: 585, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30538725

RESUMEN

Due to diverse reasons, most drug candidates cannot eventually become marketed drugs. Developing reliable computational methods for prediction of drug-likeness of candidate compounds is of vital importance to improve the success rate of drug discovery and development. In this study, we used a fully connected neural networks (FNN) to construct drug-likeness classification models with deep autoencoder to initialize model parameters. We collected datasets of drugs (represented by ZINC World Drug), bioactive molecules (represented by MDDR and WDI), and common molecules (represented by ZINC All Purchasable and ACD). Compounds were encoded with MOLD2 two-dimensional structure descriptors. The classification accuracies of drug-like/non-drug-like model are 91.04% on WDI/ACD databases, and 91.20% on MDDR/ZINC, respectively. The performance of the models outperforms previously reported models. In addition, we develop a drug/non-drug-like model (ZINC World Drug vs. ZINC All Purchasable), which distinguishes drugs and common compounds, with a classification accuracy of 96.99%. Our work shows that by using high-latitude molecular descriptors, we can apply deep learning technology to establish state-of-the-art drug-likeness prediction models.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA