Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Cardiology ; 148(1): 12-19, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36716710

RESUMEN

INTRODUCTION: Female patients are at elevated risk for adverse mental health outcomes following hospital admission for ischemic heart disease. These psychosocial characteristics are correlated with unacceptably higher rates of cardiovascular (CV) morbidity and mortality. Guidelines to address mental health following acute coronary syndrome (ACS) can only be developed with the aid of studies elucidating which subgroups of female patients are at the highest risk. METHODS/DESIGN: The Female Risk factors for post-Infarction Depression and Anxiety (FRIDA) Study is a prospective multicenter questionnaire-based study of female participants admitted to hospital with ACS. Data are collected within 72 h of admission as well as at 3 and 6 months. At baseline, participants complete a sociodemographic questionnaire, social support survey, and Hospital Depression and Anxiety Scale (HADS). Follow-up will consist of a demographic questionnaire, HADS, changes to health status, and quality of life indicators. Statistical analysis will include descriptive and inferential methods to observe baseline distributions and significance between groups. DISCUSSION/CONCLUSION: Our primary outcome is to determine if specific CV and sociodemographic factors correlate with increased depression and anxiety scores (HADS-D >7; HADS-A >7) at baseline. Our secondary aim is to determine if increased HADS scores at baseline and follow-up correlate with 3 and 6-month health and quality of life outcomes. A total of 2,000 patients will be enrolled across seven study sites. The aim of the FRIDA Study is to understand which groups of female patients have the highest rates of depression and anxiety following ACS to better inform care.


Asunto(s)
Síndrome Coronario Agudo , Infarto del Miocardio , Humanos , Femenino , Depresión , Calidad de Vida , Estudios Prospectivos , Ansiedad/etiología , Ansiedad/psicología , Factores de Riesgo
2.
Opt Express ; 23(19): 25084-97, 2015 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-26406708

RESUMEN

We demonstrate that n-doped resistive heaters in silicon waveguides show photoconductive effects with high responsivities. These photoconductive heaters, integrated into microring resonator (MRR)-based filters, were used to automatically tune and stabilize the filter's resonance wavelength to the input laser's wavelength. This is achieved without requiring dedicated defect implantations, additional material depositions, dedicated photodetectors, or optical power tap-outs. Automatic wavelength stabilization of first-order MRR and second-order series-coupled MRR filters is experimentally demonstrated. Open eye diagrams were obtained for data transmission at 12.5 Gb/s while the temperature was varied by 5 °C at a rate of 0.28 °C/s. We theoretically show that series-coupled MRR-based filters of any order can be automatically tuned by using photoconductive heaters to monitor the light intensity in each MRR, and sequentially aligning the resonance of each MRR to the laser's wavelength.

4.
Ultrasound Med Biol ; 49(5): 1268-1274, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36842904

RESUMEN

OBJECTIVE: Modelling ultrasound speckle to characterise tissue properties has generated considerable interest. As speckle is dependent on the underlying tissue architecture, modelling it may aid in tasks such as segmentation or disease detection. For the transplanted kidney, where ultrasound is used to investigate dysfunction, it is unknown which statistical distribution best characterises such speckle. This applies to the regions of the transplanted kidney: the cortex, the medulla and the central echogenic complex. Furthermore, it is unclear how these distributions vary by patient variables such as age, sex, body mass index, primary disease or donor type. These traits may influence speckle modelling given their influence on kidney anatomy. We investigate these two aims. METHODS: B-mode images from n = 821 kidney transplant recipients (one image per recipient) were automatically segmented into the cortex, medulla and central echogenic complex using a neural network. Seven distinct probability distributions were fitted to each region's histogram, and statistical analysis was performed. DISCUSSION: The Rayleigh and Nakagami distributions had model parameters that differed significantly between the three regions (p ≤ 0.05). Although both had excellent goodness of fit, the Nakagami had higher Kullbeck-Leibler divergence. Recipient age correlated weakly with scale in the cortex (Ω: ρ = 0.11, p = 0.004), while body mass index correlated weakly with shape in the medulla (m: ρ = 0.08, p = 0.04). Neither sex, primary disease nor donor type exhibited any correlation. CONCLUSION: We propose the Nakagami distribution be used to characterize transplanted kidneys regionally independent of disease etiology and most patient characteristics.


Asunto(s)
Riñón , Humanos , Ultrasonografía/métodos , Probabilidad , Riñón/diagnóstico por imagen
5.
Radiol Artif Intell ; 5(2): e220170, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37035436

RESUMEN

Purpose: To develop, implement, and evaluate feedback for an artificial intelligence (AI) workshop for radiology residents that has been designed as a condensed introduction of AI fundamentals suitable for integration into an existing residency curriculum. Materials and Methods: A 3-week AI workshop was designed by radiology faculty, residents, and AI engineers. The workshop was integrated into curricular academic half-days of a competency-based medical education radiology training program. The workshop consisted of live didactic lectures, literature case studies, and programming examples for consolidation. Learning objectives and content were developed for foundational literacy rather than technical proficiency. Identical prospective surveys were conducted before and after the workshop to gauge the participants' confidence in understanding AI concepts on a five-point Likert scale. Results were analyzed with descriptive statistics and Wilcoxon rank sum tests to evaluate differences. Results: Twelve residents participated in the workshop, with 11 completing the survey. An average score of 4.0 ± 0.7 (SD), indicating agreement, was observed when asking residents if the workshop improved AI knowledge. Confidence in understanding AI concepts increased following the workshop for 16 of 18 (89%) comprehension questions (P value range: .001 to .04 for questions with increased confidence). Conclusion: An introductory AI workshop was developed and delivered to radiology residents. The workshop provided a condensed introduction to foundational AI concepts, developed positive perception, and improved confidence in AI topics.Keywords: Medical Education, Machine Learning, Postgraduate Training, Competency-based Medical Education, Medical Informatics Supplemental material is available for this article. © RSNA, 2023.

6.
J Med Imaging (Bellingham) ; 10(3): 034003, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37304526

RESUMEN

Purpose: Length and width measurements of the kidneys aid in the detection and monitoring of structural abnormalities and organ disease. Manual measurement results in intra- and inter-rater variability, is complex and time-consuming, and is fraught with error. We propose an automated approach based on machine learning for quantifying kidney dimensions from two-dimensional (2D) ultrasound images in both native and transplanted kidneys. Approach: An nnU-net machine learning model was trained on 514 images to segment the kidney capsule in standard longitudinal and transverse views. Two expert sonographers and three medical students manually measured the maximal kidney length and width in 132 ultrasound cines. The segmentation algorithm was then applied to the same cines, region fitting was performed, and the maximum kidney length and width were measured. Additionally, single kidney volume for 16 patients was estimated using either manual or automatic measurements. Results: The experts resulted in length of 84.8±26.4 mm [95% CI: 80.0, 89.6] and a width of 51.8±10.5 mm [49.9, 53.7]. The algorithm resulted a length of 86.3±24.4 [81.5, 91.1] and a width of 47.1±12.8 [43.6, 50.6]. Experts, novices, and the algorithm did not statistically significant differ from one another (p>0.05). Bland-Altman analysis showed the algorithm produced a mean difference of 2.6 mm (SD = 1.2) from experts, compared to novices who had a mean difference of 3.7 mm (SD = 2.9 mm). For volumes, mean absolute difference was 47 mL (31%) consistent with ∼1 mm error in all three dimensions. Conclusions: This pilot study demonstrates the feasibility of an automatic tool to measure in vivo kidney biometrics of length, width, and volume from standard 2D ultrasound views with comparable accuracy and reproducibility to expert sonographers. Such a tool may enhance workplace efficiency, assist novices, and aid in tracking disease progression.

7.
PLOS Digit Health ; 2(11): e0000255, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38011214

RESUMEN

The exponential growth of artificial intelligence (AI) in the last two decades has been recognized by many as an opportunity to improve the quality of patient care. However, medical education systems have been slow to adapt to the age of AI, resulting in a paucity of AI-specific education in medical schools. The purpose of this systematic review is to evaluate the current evidence-based recommendations for the inclusion of an AI education curriculum in undergraduate medicine. Six databases were searched from inception to April 23, 2022 for cross sectional and cohort studies of fair quality or higher on the Newcastle-Ottawa scale, systematic, scoping, and integrative reviews, randomized controlled trials, and Delphi studies about AI education in undergraduate medical programs. The search yielded 991 results, of which 27 met all the criteria and seven more were included using reference mining. Despite the limitations of a high degree of heterogeneity among the study types and a lack of follow-up studies evaluating the impacts of current AI strategies, a thematic analysis of the key AI principles identified six themes needed for a successful implementation of AI in medical school curricula. These themes include ethics, theory and application, communication, collaboration, quality improvement, and perception and attitude. The themes of ethics, theory and application, and communication were further divided into subthemes, including patient-centric and data-centric ethics; knowledge for practice and knowledge for communication; and communication for clinical decision-making, communication for implementation, and communication for knowledge dissemination. Based on the survey studies, medical professionals and students, who generally have a low baseline knowledge of AI, have been strong supporters of adding formal AI education into medical curricula, suggesting more research needs to be done to push this agenda forward.

8.
JMIR Med Inform ; 10(8): e34304, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35969464

RESUMEN

The rapid development of artificial intelligence (AI) in medicine has resulted in an increased number of applications deployed in clinical trials. AI tools have been developed with goals of improving diagnostic accuracy, workflow efficiency through automation, and discovery of novel features in clinical data. There is subsequent concern on the role of AI in replacing existing tasks traditionally entrusted to physicians. This has implications for medical trainees who may make decisions based on the perception of how disruptive AI may be to their future career. This commentary discusses current barriers to AI adoption to moderate concerns of the role of AI in the clinical setting, particularly as a standalone tool that replaces physicians. Technical limitations of AI include generalizability of performance and deficits in existing infrastructure to accommodate data, both of which are less obvious in pilot studies, where high performance is achieved in a controlled data processing environment. Economic limitations include rigorous regulatory requirements to deploy medical devices safely, particularly if AI is to replace human decision-making. Ethical guidelines are also required in the event of dysfunction to identify responsibility of the developer of the tool, health care authority, and patient. The consequences are apparent when identifying the scope of existing AI tools, most of which aim to be physician assisting rather than a physician replacement. The combination of the limitations will delay the onset of ubiquitous AI tools that perform standalone clinical tasks. The role of the physician likely remains paramount to clinical decision-making in the near future.

9.
MethodsX ; 9: 101738, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35677846

RESUMEN

Development of non-invasive and in utero placenta imaging techniques can potentially identify biomarkers of placental health. Correlative imaging using multiple multiscale modalities is particularly important to advance the understanding of placenta structure, function and their relationship. The objective of the project SWAVE 2.0 was to understand human placental structure and function and thereby identify quantifiable measures of placental health using a multimodal correlative approach. In this paper, we present a multimodal image acquisition protocol designed to acquire and align data from ex vivo placenta specimens derived from both healthy and complicated pregnancies. Qualitative and quantitative validation of the alignment method were performed. The qualitative analysis showed good correlation between findings in the MRI, ultrasound and histopathology images. The proposed protocol would enable future studies on comprehensive analysis of placental anatomy, function and their relationship. ● An overview of a novel multimodal placental image acquisition protocol is presented. ● A co-registration method using surface markers and external fiducials is described. ● A preliminary correlative imaging analysis for a placenta specimen is presented.

10.
Commun Med (Lond) ; 2(1): 63, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35668847

RESUMEN

Clinical artificial intelligence (AI) applications are rapidly developing but existing medical school curricula provide limited teaching covering this area. Here we describe an AI training curriculum we developed and delivered to Canadian medical undergraduates and provide recommendations for future training.

11.
Ultrasound Med Biol ; 48(12): 2486-2501, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36180312

RESUMEN

Pregnancy complications such as pre-eclampsia (PE) and intrauterine growth restriction (IUGR) are associated with structural and functional changes in the placenta. Different elastography techniques with an ability to assess the mechanical properties of tissue can identify and monitor the pathological state of the placenta. Currently available elastography techniques have been used with promising results to detect placenta abnormalities; however, limitations include inadequate measurement depth and safety concerns from high negative pressure pulses. Previously, we described a shear wave absolute vibro-elastography (SWAVE) method by applying external low-frequency mechanical vibrations to generate shear waves and studied 61 post-delivery clinically normal placentas to explore the feasibility of SWAVE for placental assessment and establish a measurement baseline. This next phase of the study, namely, SWAVE 2.0, improves the previous system and elasticity reconstruction by incorporating a multi-frequency acquisition system and using a 3-D local frequency estimation (LFE) method. Compared with its 2-D counterpart, the proposed system using 3-D LFE was found to reduce the bias and variance in elasticity measurements in tissue-mimicking phantoms. In the aim of investigating the potential of improved SWAVE 2.0 measurements to identify placental abnormalities, we studied 46 post-delivery placentas, including 26 diseased (16 IUGR and 10 PE) and 20 normal control placentas. By use of a 3.33-MHz motorized curved-array transducer, multi-frequency (80,100 and 120 Hz) elasticity measures were obtained with 3-D LFE, and both IUGR (15.30 ± 2.96 kPa, p = 3.35e-5) and PE (12.33 ± 4.88 kPa, p = 0.017) placentas were found to be significantly stiffer compared with the control placentas (8.32 ± 3.67 kPa). A linear discriminant analysis (LDA) classifier was able to classify between healthy and diseased placentas with a sensitivity, specificity and accuracy of 87%, 78% and 83% and an area under the receiver operating curve of 0.90 (95% confidence interval: 0.8-0.99). Further, the pregnancy outcome in terms of neonatal intensive care unit admission was predicted with a sensitivity, specificity and accuracy of 70%, 71%, 71%, respectively, and area under the receiver operating curve of 0.78 (confidence interval: 0.62-0.93). A viscoelastic characterization of placentas using a fractional rheological model revealed that the viscosity measures in terms of viscosity parameter n were significantly higher in IUGR (2.3 ± 0.21) and PE (2.11 ± 0.52) placentas than in normal placentas (1.45 ± 0.65). This work illustrates the potential relevance of elasticity and viscosity imaging using SWAVE 2.0 as a non-invasive technology for detection of placental abnormalities and the prediction of pregnancy outcomes.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Enfermedades Placentarias , Recién Nacido , Embarazo , Femenino , Humanos , Diagnóstico por Imagen de Elasticidad/métodos , Placenta/diagnóstico por imagen , Viscosidad , Enfermedades Placentarias/diagnóstico por imagen , Elasticidad , Retardo del Crecimiento Fetal/diagnóstico por imagen , Biomarcadores
12.
Phys Imaging Radiat Oncol ; 24: 36-42, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36148155

RESUMEN

Background and Purpose: Prognostic assessment of local therapies for colorectal liver metastases (CLM) is essential for guiding management in radiation oncology. Computed tomography (CT) contains liver texture information which may be predictive of metastatic environments. To investigate the feasibility of analyzing CT texture, we sought to build an automated model to predict progression-free survival using CT radiomics and artificial intelligence (AI). Materials and Methods: Liver CT scans and outcomes for N = 97 CLM patients treated with radiotherapy were retrospectively obtained. A survival model was built by extracting 108 radiomic features from liver and tumor CT volumes for a random survival forest (RSF) to predict local progression. Accuracies were measured by concordance indices (C-index) and integrated Brier scores (IBS) with 4-fold cross-validation. This was repeated with different liver segmentations and radiotherapy clinical variables as inputs to the RSF. Predictive features were identified by perturbation importances. Results: The AI radiomics model achieved a C-index of 0.68 (CI: 0.62-0.74) and IBS below 0.25 and the most predictive radiomic feature was gray tone difference matrix strength (importance: 1.90 CI: 0.93-2.86) and most predictive treatment feature was maximum dose (importance: 3.83, CI: 1.05-6.62). The clinical data only model achieved a similar C-index of 0.62 (CI: 0.56-0.69), suggesting that predictive signals exist in radiomics and clinical data. Conclusions: The AI model achieved good prediction accuracy for progression-free survival of CLM, providing support that radiomics or clinical data combined with machine learning may aid prognostic assessment and management.

13.
JMIR Med Educ ; 8(1): e33390, 2022 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-35099397

RESUMEN

BACKGROUND: Artificial intelligence (AI) is no longer a futuristic concept; it is increasingly being integrated into health care. As studies on attitudes toward AI have primarily focused on physicians, there is a need to assess the perspectives of students across health care disciplines to inform future curriculum development. OBJECTIVE: This study aims to explore and identify gaps in the knowledge that Canadian health care students have regarding AI, capture how health care students in different fields differ in their knowledge and perspectives on AI, and present student-identified ways that AI literacy may be incorporated into the health care curriculum. METHODS: The survey was developed from a narrative literature review of topics in attitudinal surveys on AI. The final survey comprised 15 items, including multiple-choice questions, pick-group-rank questions, 11-point Likert scale items, slider scale questions, and narrative questions. We used snowball and convenience sampling methods by distributing an email with a description and a link to the web-based survey to representatives from 18 Canadian schools. RESULTS: A total of 2167 students across 10 different health professions from 18 universities across Canada responded to the survey. Overall, 78.77% (1707/2167) predicted that AI technology would affect their careers within the coming decade and 74.5% (1595/2167) reported a positive outlook toward the emerging role of AI in their respective fields. Attitudes toward AI varied by discipline. Students, even those opposed to AI, identified the need to incorporate a basic understanding of AI into their curricula. CONCLUSIONS: We performed a nationwide survey of health care students across 10 different health professions in Canada. The findings would inform student-identified topics within AI and their preferred delivery formats, which would advance education across different health care professions.

14.
Ultrasound Med Biol ; 45(8): 2248-2257, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31101443

RESUMEN

An acoustic shadow is an ultrasound artifact occurring at boundaries between significantly different tissue impedances, resulting in signal loss and a dark appearance. Shadow detection is important as shadows can identify anatomical features or obscure regions of interest. A study was performed to scan human participants (N = 37) specifically to explore the statistical characteristics of various shadows from different anatomy and with different transducers. Differences in shadow statistics were observed and used for shadow detection algorithms with a fitted Nakagami distribution on radiofrequency (RF) speckle or cumulative entropy on brightness-mode (B-mode) data. The fitted Nakagami parameter and entropy values in shadows were consistent across different transducers and anatomy. Both algorithms utilized adaptive thresholding, needing only the transducer pulse length as an input parameter for easy utilization by different operators or equipment. Mean Dice coefficients (± standard deviation) of 0.90 ± 0.07 and 0.87 ± 0.08 were obtained for the RF and B-mode algorithms, which is within the range of manual annotators. The high accuracy in different imaging scenarios indicates that the shadows can be detected with high versatility and without expert configuration. The understanding of shadow statistics can be used for more specialized techniques to be developed for specific applications in the future, including pre-processing for machine learning and automatic interpretation.


Asunto(s)
Artefactos , Costillas/anatomía & histología , Ultrasonografía/métodos , Extremidad Superior/anatomía & histología , Adulto , Codo/anatomía & histología , Antebrazo/anatomía & histología , Humanos , Transductores , Ultrasonografía/instrumentación
15.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 6718-6723, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31947383

RESUMEN

Placental assessment through routine obstetrical ultrasound is often limited to documenting its location and ruling out placenta previa. However, many obstetrical complications originate from abnormal focal or global placental development. Technical difficulties in assessing the placenta as well as a lack of established objective criteria to classify echotexture are barriers to diagnosis of pathology by ultrasound imaging. As a first step towards the development of a computer aided placental assessment tool, we developed a fully automated method for placental segmentation using a convolutional neural network. The network contains a novel layer weighted by automated acoustic shadow detection to recognize artifacts specific to ultrasound. In order to develop a detection algorithm usable in different imaging scenarios, we acquired a dataset containing 1364 fetal ultrasound images from 247 patients acquired over 47 months was taken with different machines, operators, and at a range of gestational ages. Mean Dice coefficients for automated segmentation on the full dataset with and without the acoustic shadow detection layer were 0.92±0.04 and 0.91±0.03 when comparing to manual segmentation. Mean Dice coefficients on the subset of images containing acoustic shadows with and without acoustic shadow detection were 0.87±0.04 and 0.75±0.05. The method requires no user input to tune the detection. The automated placenta segmentation method can serve as a preprocessing step for further image analysis in artificial intelligence methods requiring large scale data processing of placental images.


Asunto(s)
Inteligencia Artificial , Redes Neurales de la Computación , Acústica , Algoritmos , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Placenta , Embarazo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA