Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Appl Environ Microbiol ; 90(2): e0146823, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38193675

RESUMEN

Bacillus spp., a class of aerobic bacteria, is widely used as a biocontrol microbe in the world. However, the reactive oxygen species (ROS) will accumulate once the aerobic bacteria are exposed to environmental stresses, which can decrease cell activity or lead to cell death. Hydroxyl radical (·OH), the strongest oxide in the ROS, can damage DNA directly, which is generated through Fenton Reaction by H2O2 and free iron. Here, we proved that the synthesis of pulcherriminic acid (PA), an iron chelator produced by Bacillus spp., could reduce DNA damage to protect cells from oxidative stress by sequestrating excess free iron, which enhanced the cell survival rates in stressful conditions (salt, antibiotic, and high temperature). It was worth noting that the synthesis of PA was found to be increased under oxidative stress. Thus, we demonstrated that the YvmB, a direct negative regulator of PA synthesis cluster yvmC-cypX, could be oxidized at cysteine residue (C57) to form a dimer losing the DNA-binding activity, which led to an improvement in PA production. Collectively, our findings highlight that YvmB senses ROS to regulate PA synthesis is one of the evolved proactive defense systems in bacteria against adverse environments.IMPORTANCEUnder environment stress, the electron transfer chain will be perturbed resulting in the accumulation of H2O2 and rapidly transform to ·OH through Fenton Reaction. How do bacteria deal with oxidative stress? At present, several iron chelators have been reported to decrease the ·OH generation by sequestrating iron, while how bacteria control the synthesis of iron chelators to resist oxidative stress is still unclear. Our study found that the synthesis of iron chelator PA is induced by reactive oxygen species (ROS), which means that the synthesis of iron chelator is a proactive defense mechanism against environment stress. Importantly, YvmB is the first response factor found to protect cells by reducing the ROS generation, which present a new perspective in antioxidation studies.


Asunto(s)
Bacillus licheniformis , Bacillus , Especies Reactivas de Oxígeno/metabolismo , Bacillus licheniformis/metabolismo , Peróxido de Hidrógeno , Estrés Oxidativo , Hierro/metabolismo , Quelantes del Hierro , Bacillus/metabolismo , ADN/metabolismo
2.
World J Microbiol Biotechnol ; 39(7): 168, 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37088857

RESUMEN

Lichenysin, a cyclic lipopeptide biosurfactant produced by Bacillus licheniformis, is composed of aspartate, glutamine, valine, leucine, isoleucine, and branched chain fatty acids. The synthesis of these amino acids and fatty acids requires pyruvate and NADPH as the primary precursor and cofactor. Therefore, a sufficient supply of pyruvate and NADPH is crucial for lichenysin production. This study aimed to increase lichenysin production by constructing a synthetic ED pathway in B. licheniformis WX02 through introducing phosphogluconate dehydratase (encoded by gene edd) and 2-keto-3-deoxygluconate 6-phosphate aldolase (encoded by gene eda) from Escherichia coli. Additionally, the NADP+-dependent glucose-6-phosphate dehydrogenase (encoded by gene zwf) was overexpressed, resulting in an engineered strain WX02/pHY-edda(Ec)-zwf. Analysis of the fermentation process revealed that the concentrations of pyruvate, aspartate, glutamine, valine, leucine, branched-chain fatty acids (iC15:0, aC15:0, iC16:0, iC17:0), and NADPH in WX02/pHY-edda(Ec)-zwf were increased by 77.21%, 80.41%, 85.31%, 141.64%, 44.94%, 35.08%, 38.08%, 19.33%, 21.16%, and 425%, respectively, compared to the control strain WX02/pHY300, which resulted in a 45.43% increase of lichenysin titer. This work took advantage of the ED pathway to increase lichenysin production for the first time, and provides a promising strategy for boosting the productivity of biochemicals that require pyruvate and NADPH as precursor and cofactor.


Asunto(s)
Bacillus licheniformis , Bacillus licheniformis/genética , Bacillus licheniformis/metabolismo , Glutamina/metabolismo , Ácido Aspártico/metabolismo , Leucina , NADP/metabolismo , Péptidos Cíclicos , Valina , Piruvatos/metabolismo , Ácidos Grasos/metabolismo
3.
World J Microbiol Biotechnol ; 39(5): 115, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36918439

RESUMEN

Metabolic engineering is a substantial approach for escalating the production of biochemical products. Cell biomass is lowered by system constraints and toxication carried on by the aggregation of metabolites that serve as inhibitors of product synthesis. In order to increase the production of biochemical products, it is important to trace the relationship between alanine metabolism and biomass. According to our investigation, the appropriate concentration of additional L/D-alanine (0.1 g/L) raised the cell biomass (OD600) in Bacillus licheniformis in contrast to the control strain. Remarkably, it was also determined that high levels of intracellular L/D-alanine and D-alanyl-D-alanine were induced by the overexpression of the ald, dal, and ddl genes to accelerate cell proliferation. Our findings clearly revealed that 0.2 g/L of L-alanine and D-alanine substantially elevated the titer of poly-γ-glutamic acid (γ-PGA) by 14.89% and 6.19%, correspondingly. And the levels of γ-PGA titer were hastened by the overexpression of the ald, dal, and ddl genes by 19.72%, 15.91%, and 16.64%, respectively. Furthermore, overexpression of ald, dal, and ddl genes decreased the by-products (acetoin, 2,3-butanediol, acetic acid and lactic acid) formation by about 14.10%, 8.77%, and 8.84% for augmenting the γ-PGA production. Our results also demonstrated that overexpression of ald gene amplified the production of lichenysin, pulcherrimin and nattokinase by about 18.71%, 19.82% and 21.49%, respectively. This work delineated the importance of the L/D-alanine and D-alanyl-D-alanine synthesis to the cell growth and the high production of bio-products, and provided an effective strategy for producing bio-products.


Asunto(s)
Bacillus licheniformis , Bacillus licheniformis/genética , Bacillus licheniformis/metabolismo , Ingeniería Metabólica , Ácido Acético/metabolismo , Ácido Poliglutámico/metabolismo
4.
Metab Eng ; 74: 108-120, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36257594

RESUMEN

Lichenysin, producted by Bacillus licheniformis, is an important cyclic lipopeptide biosurfactant, which has potential applications in oil exploitation, drug development, biological control of agriculture and bioremediation. While studies are lacking on metabolism regulation of lichenysin biosynthesis, which limits metabolic engineering and large-scale production of lichenysin. In this study, the yield of lichenysin was improved obviously by 13.6 folds to 2.18 ± 0.03 g/L in degU deletion strain (WX02△degU) compared with the wild-type strain (WX02) and completely inhibited in degU overexpressed strain (WX02/pHY-degU). We further proved that DegU, a transcription factor plays a significant role in multicellular behavior, is a key negative regulator of lichenysin synthesis lchA operon. But interestingly, lichenysin yield was still inhibited by overexpressing DegU in the promoter-substituted strain (WX02-PP43lch), in which promoter of lchA operon cannot be controlled by DegU. Thus, through 13C-metabolic flux analysis, we found that deletion of degU also enhanced glucose uptake, branched chain amino acid synthesis, and fatty acid synthesis, while decrease acetoin synthesis, which is beneficial for the supply of lichenysin precursors. Further experiments demonstrate that DegU regulates these pathways by binding to the promoter regions of related genes. Overall, we systematically investigated the multi-pathway regulation network mediated by DegU on lichenysin biosynthesis, which not only contributes to the further metabolic engineering for lichenysin high-production, but sheds light on studies of transcription factor regulation.


Asunto(s)
Bacillus licheniformis , Bacillus licheniformis/genética , Bacillus licheniformis/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Lipoproteínas/química , Lipoproteínas/genética , Lipoproteínas/metabolismo , Anilidas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bacillus subtilis/metabolismo
5.
Appl Microbiol Biotechnol ; 102(23): 10127-10137, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30229325

RESUMEN

Poly gamma glutamic acid (γ-PGA) is an anionic polyamide with numerous applications. Previous studies revealed that L-proline metabolism is implicated in a wide range of cellular processes by increasing intercellular reactive oxygen species (ROS) generation. However, the relationship between L-proline metabolism and γ-PGA synthesis has not yet been analyzed. In this study, our results confirmed that deletion of Δ1-pyrroline-5-carboxylate dehydrogenase gene ycgN in Bacillus licheniformis WX-02 increased γ-PGA yield to 13.91 g L-1, 85.22% higher than that of the wild type (7.51 g L-1). However, deletion of proline dehydrogenase gene ycgM had no effect on γ-PGA synthesis. Furthermore, a 2.92-fold higher P5C content (19.24 µmol gDCW-1) was detected in the ycgN deficient strain WXΔycgN, while the P5C levels of WXΔycgM and the double mutant strain WXΔycgMN showed no difference, compared to WX-02. Moreover, the ROS level of WXΔycgN was increased by 1.18-fold, and addition of n-acetylcysteine (antioxidant) decreased its ROS level, which further reduced γ-PGA synthesis capability of WXΔycgN. Collectively, our results demonstrated that proline catabolism played an important role in maintaining ROS homeostasis, and deletion of ycgN-enhanced P5C accumulation, which induced a transient ROS signal to promote γ-PGA synthesis in B. licheniformis.


Asunto(s)
1-Pirrolina-5-Carboxilato Deshidrogenasa/genética , Bacillus licheniformis/genética , Proteínas Bacterianas/genética , Ácido Poliglutámico/análogos & derivados , Especies Reactivas de Oxígeno/metabolismo , 1-Pirrolina-5-Carboxilato Deshidrogenasa/metabolismo , Bacillus licheniformis/enzimología , Proteínas Bacterianas/metabolismo , Citoplasma , Eliminación de Gen , Ácido Poliglutámico/biosíntesis , Ácido Poliglutámico/genética
6.
Microbiol Res ; 287: 127843, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39024796

RESUMEN

Oxidative damage caused by the accumulation of reactive oxygen species (ROS) is one of the main obstacles to the improvement of microbial cell growth and fermentation characteristics under adverse environments. And the antioxidant capacity of cells will increase with the cell growth. Here, we found that a transition state transcription factor AbrB related to changes in cell growth status could regulate the accumulation of ROS and antioxidant capacity in Bacillus licheniformis. The results showed that the accumulation of intracellular ROS was reduced by 23.91 % and the cell survival rates were increased by 1.77-fold under 0.5 mM H2O2 when AbrB was knocked out. We further mapped regulatory target genes of AbrB related to ROS generation or clearance based on our previously analyzed transcriptome sequencing. It proved that AbrB could promote ROS generation via upregulating the synthesis of oxidase and siderophores, and negatively regulating the synthesis of iron chelators (pulcherriminic acid, and H2S). Additionally, AbrB could inhibit ROS clearance by negatively regulating the synthesis of antioxidase (superoxide dismutase, catalase, peroxidase, thioredoxin, thioredoxin reductase) and cysteine. Those results illustrated that the inactivation of AbrB during the stationary phase, along with its control over ROS generation and clearance, might represent a vital self-protection mechanism during cell evolution. Overall, the systematic investigation of the multi-pathway regulation network of ROS generation and clearance highlights the important function of AbrB in maintaining intracellular redox balance.

7.
ACS Omega ; 8(24): 21726-21735, 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37360456

RESUMEN

This study employed bamboo as the raw material and employed the sodium chlorite method to remove most of the chromogenic groups in bamboo. The low-temperature reactive dyes were then utilized as the dyeing agents in combination with the one-bath method to dye the decolorized bamboo bundles. The dyed bamboo bundles were subsequently twisted into bamboo fiber bundles with high flexibility. The effects of various factors, including dye concentration, dyeing promoter concentration, and fixing agent concentration, on the dyeing properties, mechanical properties, and other properties of the twisted bamboo bundles were investigated using a tensile test, dyeing rate test, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy. The results indicate that the macroscopic bamboo fibers prepared by the top-down method have excellent dyeability. The dyeing treatment not only improves the aesthetics of bamboo fibers but also improves their mechanical properties to a certain extent. When the concentration of dye is 1.0% (o.w.f.), the concentration of dye promoter is 30 g/L, and the concentration of color fixing agent is 10 g/L, the comprehensive mechanical properties of the dyed bamboo fiber bundles are the best. At this time, the tensile strength is 95.1 MPa, 2.45 times that of undyed bamboo fiber bundles. XPS analysis results show that the relative content of C-O-C in the fiber is significantly increased compared with that before dyeing, which indicates that the formed dye fiber covalent bond can strengthen the cross-linking between fibers, thus improving its tensile performance. The covalent bond is stable, and the dyed fiber bundle can retain its mechanical strength even after high temperature soaping.

8.
RSC Adv ; 13(47): 33514-33524, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-38025847

RESUMEN

The dyeing properties of twisted bamboo fiber bundles were studied by using the combination of three primary colors in M-type reactive dyes. The study found that the three dyes of red, yellow and blue have good color rendering in the actual dyeing process, and because the molecular structures of the three are similar, the chemical reactions during the fixation are the same, so the final dyeing rate results are similar, which were 29-32%. Compared with the undyed twisted bamboo fiber bundle, the mechanical properties of the three-color twisted bamboo fiber bundle also changed significantly, and the tensile strength increased by 13.79% on average. The changes of elastic modulus and elongation at break showed that the three-color twisted bamboo fiber bundle had excellent flexibility. In addition, there are significant color differences between the samples of each color. When the color indexes of DB are used as the benchmark, the ΔE* of other dyed samples varies from 40 to 80, and the color of each sample is relatively uniform, without an obvious color flower phenomenon. This indicates that twisted bamboo fiber bundles with richer colors can be prepared by different combinations of three primary dyes, which can improve the ornamental value of bamboo fiber bundles after processing into large blocks and their application potential in home textiles, interior decoration and other fields.

9.
Front Microbiol ; 10: 105, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30774627

RESUMEN

Poly-γ-glutamic acid (γ-PGA) is an anionic polymer with various applications. Teichoic acid (TA) is a special component of cell wall in gram-positive bacteria, and its D-alanylation modification can change the net negative charge of cell surface, autolysin activity and cationic binding efficiency, and might further affect metabolic production. In this research, four genes (dltA, dltB, dltC, and dltD) of dlt operon were, respectively, deleted and overexpressed in the γ-PGA producing strain Bacillus licheniformis WX-02. Our results implied that overexpression of these genes could all significantly increase γ-PGA synthetic capabilities, among these strains, the dltB overexpression strain WX-02/pHY-dltB owned the highest γ-PGA yield (2.54 g/L), which was 93.42% higher than that of the control strain WX-02/pHY300 (1.31 g/L). While, the gene deletion strains produced lower γ-PGA titers. Furthermore, 13C-Metabolic flux analysis was conducted to investigate the influence of dltB overexpression on metabolic flux redistribution during γ-PGA synthesis. The simulation data demonstrated that fluxes of pentose phosphate pathway and tricarboxylic acid cycle in WX-02/pHY-dltB were 36.41 and 19.18 mmol/g DCW/h, increased by 7.82 and 38.38% compared to WX-02/pHY300 (33.77 and 13.86 mmol/g DCW/h), respectively. The synthetic capabilities of ATP and NADPH were also increased slightly. Meanwhile, the fluxes of glycolytic and by-product synthetic pathways were all reduced in WX-02/pHY-dltB. All these above phenomenons were beneficial for γ-PGA synthesis. Collectively, this study clarified that overexpression of dltB strengthened the fluxes of PPP pathway, TCA cycle and energy metabolism for γ-PGA synthesis, and provided an effective strategy for enhanced production of γ-PGA.

10.
Appl Biochem Biotechnol ; 185(4): 958-970, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29388009

RESUMEN

Poly-γ-glutamic acid is a multi-functional biopolymer with various applications. ATP supply plays an important role in poly-γ-glutamic acid (γ-PGA) synthesis. Global anaerobic regulator Fnr plays a key role in anaerobic adaptation and nitrate respiration, which might affect ATP generation during γ-PGA synthesis. In this study, we have improved γ-PGA production by overexpression of Fnr in Bacillus licheniformis WX-02. First, the gene fnr was knocked out in WX-02, and the γ-PGA yields have no significant differences between WX-02 and the fnr-deficient strain WXΔfnr in the medium without nitrate (BFC medium). However, the γ-PGA yield of 8.95 g/L, which was produced by WXΔfnr in the medium with nitrate addition (BFCN medium), decreased by 74% compared to WX-02 (34.53 g/L). Then, the fnr complementation strain WXΔfnr/pHY-fnr restored the γ-PGA synthesis capability, and γ-PGA yield was increased by 13% in the Fnr overexpression strain WX/pHY-fnr (39.96 g/L) in BFCN medium, compared to WX/pHY300 (35.41 g/L). Furthermore, the transcriptional levels of narK, narG, and hmp were increased by 5.41-, 4.93-, and 3.93-fold in WX/pHY-fnr, respectively, which led to the increases of nitrate consumption rate and ATP supply for γ-PGA synthesis. Collectively, Fnr affects γ-PGA synthesis mainly through manipulating the expression level of nitrate metabolism, and this study provides a novel strategy to improve γ-PGA production by overexpression of Fnr.


Asunto(s)
Bacillus licheniformis/metabolismo , Proteínas Bacterianas/biosíntesis , Ácidos Glicéricos/metabolismo , Proteínas Hierro-Azufre/biosíntesis , Anaerobiosis/genética , Bacillus licheniformis/genética , Proteínas Bacterianas/genética , Proteínas Hierro-Azufre/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA