Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Small ; 20(25): e2309331, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38213019

RESUMEN

The ß-relaxation is one of the major dynamic behaviors in metallic glasses (MGs) and exhibits diverse features. Despite decades of efforts, the understanding of its structural origin and contribution to the overall dynamics of MG systems is still unclear. Here two palladium-based Pd─Cu─P and Pd─Ni─P MGs are reported with distinct different ß-relaxation behaviors and reveal the structural origins for the difference using the advanced X-ray photon correlation spectroscopy and absorption fine structure techniques together with the first-principles calculations. The pronounced ß-relaxation and fast atomic dynamics in the Pd─Cu─P MG mainly come from the strong mobility of Cu atoms and their locally favored structures. In contrast, the motion of Ni atoms is constrained by P atoms in the Pd─Ni─P MG, leading to the weakened ß-relaxation peak and sluggish dynamics. The correlation of atomic dynamics with microscopic structures provides a way to understand the structural origins of different dynamic behaviors as well as the nature of aging in disordered materials.

2.
Nat Mater ; 22(8): 1022-1029, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37349398

RESUMEN

In analogy to natural enzymes, an elaborated design of catalytic systems with a specifically tailored local chemical environment could substantially improve reaction kinetics, effectively combat catalyst poisoning effect and boost catalyst lifetime under unfavourable reaction conditions. Here we report a unique design of 'Ni(OH)2-clothed Pt-tetrapods' with an amorphous Ni(OH)2 shell as a water dissociation catalyst and a proton conductive encapsulation layer to isolate the Pt core from bulk alkaline electrolyte while ensuring efficient proton supply to the active Pt sites. This design creates a favourable local chemical environment to result in acidic-like hydrogen evolution reaction kinetics with a lowest Tafel slope of 27 mV per decade and a record-high specific activity and mass activity in alkaline electrolyte. The proton conductive Ni(OH)2 shell can also effectively reject impurity ions and retard the Oswald ripening, endowing a high tolerance to solution impurities and exceptional long-term durability that is difficult to achieve in the naked Pt catalysts. The markedly improved hydrogen evolution reaction activity and durability in an alkaline medium promise an attractive catalyst material for alkaline water electrolysers and renewable chemical fuel generation.

3.
Chem Soc Rev ; 48(20): 5207-5241, 2019 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-31573024

RESUMEN

Electrocatalysis plays an essential role in diverse electrochemical energy conversion processes that are vital for improving energy utilization efficiency and mitigating the aggravating global warming challenge. The noble metals such as platinum are generally the most frequently used electrocatalysts to drive these reactions and facilitate the relevant energy conversion processes. The high cost and scarcity of these materials pose a serious challenge for the wide-spread adoption and the sustainability of these technologies in the long run, which have motivated considerable efforts in searching for alternative electrocatalysts with reduced loading of precious metals or based entirely on earth-abundant metals. Of particular interest are graphene-supported single atom catalysts (G-SACs) that integrate the merits of heterogeneous catalysts and homogeneous catalysts, such as high activity, selectivity, stability, maximized atom utilization efficiency and easy separation from reactants/products. The graphene support features a large surface area, high conductivity and excellent (electro)-chemical stability, making it a highly attractive substrate for supporting single atom electrocatalysts for various electrochemical energy conversion processes. In this review, we highlight the recent advancements in G-SACs for electrochemical energy conversion, from the synthetic strategies and identification of the atomistic structure to electrocatalytic applications in a variety of reactions, and finally conclude with a brief prospect on future challenges and opportunities.

4.
Inorg Chem ; 57(10): 6051-6056, 2018 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-29722989

RESUMEN

The quaternary compound Cu2ZnSnSe4 (CZTSe), as a typical candidate for both solar cells and thermoelectrics, is of great interest for energy harvesting applications. Materials with a high thermoelectric efficiency have a relatively low thermal conductivity, which is closely related to their chemical bonding and lattice dynamics. Therefore, it is essential to investigate the lattice dynamics of materials to further improve their thermoelectric efficiency. Here we report a lattice dynamic study in a cobalt-substituted CZTSe system using temperature-dependent X-ray absorption fine structure spectroscopy (TXAFS). The lattice contribution to the thermal conductivity is dominant, and its reduction is mainly ascribed to the increment of point defects after cobalt substitution. Furthermore, a lattice dynamic study shows that the Einstein temperature of atomic pairs is reduced after cobalt substitution, revealing that increasing local structure disorder and weakened bonding for each of the atomic pairs are achieved, which gives us a new perspective for understanding the behavior of lattice thermal conductivity.

5.
J Synchrotron Radiat ; 24(Pt 1): 367-373, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28009579

RESUMEN

In this report, AI-BL1.0, an open-source Labview-based program for automatic on-line beamline optimization, is presented. The optimization algorithms used in the program are Genetic Algorithm and Differential Evolution. Efficiency was improved by use of a strategy known as Observer Mode for Evolutionary Algorithm. The program was constructed and validated at the XAFCA beamline of the Singapore Synchrotron Light Source and 1W1B beamline of the Beijing Synchrotron Radiation Facility.

6.
J Synchrotron Radiat ; 24(Pt 3): 674-678, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28452760

RESUMEN

A new quick-scanning X-ray absorption fine-structure (QXAFS) system has been established on beamline 1W1B at the Beijing Synchrotron Radiation Facility. As an independent device, the QXAFS system can be employed by other beamlines equipped with a double-crystal monochromator to carry out quick energy scans and data acquisition. Both continuous-scan and trapezoidal-scan modes are available in this system to satisfy the time scale from subsecond (in the X-ray absorption near-edge structure region) to 1 min. Here, the trapezoidal-scan method is presented as being complementary to the continuous-scan method, in order to maintain high energy resolution and good signal-to-noise ratio. The system is demonstrated to be very reliable and has been combined with in situ cells to carry out time-resolved XAFS studies.

7.
Proc Natl Acad Sci U S A ; 110(25): 10068-72, 2013 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-23733928

RESUMEN

When a material is heated, generally, it dilates. Here, we find a general trend that the average distance between a center atom and atoms in the first nearest-neighbor shell contracts for several metallic melts upon heating. Using synchrotron X-ray diffraction technique and molecular dynamics simulations, we elucidate that this anomaly is caused by the redistribution of polyhedral clusters affected by temperature. In metallic melts, the high-coordinated polyhedra are inclined to evolve into low-coordinated ones with increasing temperature. As the coordination number decreases, the average atomic distance between a center atom and atoms in the first shell of polyhedral clusters is reduced. This phenomenon is a ubiquitous feature for metallic melts consisting of various-sized polyhedra. This finding sheds light on the understanding of atomic structures and thermal behavior of disordered materials and will trigger more experimental and theoretical studies of liquids, amorphous alloys, glasses, and casting temperature effect on solidification process of crystalline materials.


Asunto(s)
Aleaciones/química , Calor , Ensayo de Materiales/métodos , Metales/química , Aluminio/química , Oro/química , Níquel/química , Plata/química , Sincrotrones , Estaño/química , Difracción de Rayos X , Zinc/química
8.
J Am Chem Soc ; 137(7): 2622-7, 2015 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-25641111

RESUMEN

Outstanding magnetic properties are highly desired for two-dimensional ultrathin semiconductor nanosheets. Here, we propose a phase incorporation strategy to induce robust room-temperature ferromagnetism in a nonmagnetic MoS2 semiconductor. A two-step hydrothermal method was used to intentionally introduce sulfur vacancies in a 2H-MoS2 ultrathin nanosheet host, which prompts the transformation of the surrounding 2H-MoS2 local lattice into a trigonal (1T-MoS2) phase. 25% 1T-MoS2 phase incorporation in 2H-MoS2 nanosheets can enhance the electron carrier concentration by an order, introduce a Mo(4+) 4d energy state within the bandgap, and create a robust intrinsic ferromagnetic response of 0.25 µB/Mo by the exchange interactions between sulfur vacancy and the Mo(4+) 4d bandgap state at room temperature. This design opens up new possibility for effective manipulation of exchange interactions in two-dimensional nanostructures.

9.
J Synchrotron Radiat ; 22(5): 1147-50, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26289264

RESUMEN

Simulations of the periods, split regularities and mirror symmetries of the glitch pattern of a Si(111) crystal along with the azimuthal angles are presented. The glitch patterns of Si(111) double-crystal monochromators (DCMs) are found to be the superposition of the two sets of glitch patterns from the two crystals. The optimal azimuthal orientation ϕ1,2 = [(2n+1)π]/6 (n = 0, ±1, ±2…) for Si(111) DCMs to achieve the least amount of glitches in the hard X-ray region has been suggested.

10.
J Synchrotron Radiat ; 21(Pt 1): 165-9, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24365932

RESUMEN

A facile heating cell has been designed for in situ transmittance and fluorescence X-ray absorption spectroscopy (XAS) measurements up to 1273 K under vacuum or an inert atmosphere. These high temperatures are achieved using a tantalum heating element by ohmic heating. Because of the small specific heat capacity, the temperature can be changed in a matter of minutes from room temperature to high temperature. Furthermore, a commercial power controller was adapted to provide stable temperature control. The construction of the heat shielding system provides a novel approach to reducing the beam's path length and the cell's size. The cell is inexpensive and easy to build. Its performance was evaluated by in situ XAS measurements of the temperature-dependent structure of ceria nanocrystals. Some preliminary results for the structural mechanism in ceria nanocrystal redox applications are given.

11.
J Synchrotron Radiat ; 21(Pt 4): 756-61, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24971971

RESUMEN

Obtaining sub-10 pm spatial resolution by extended X-ray absorption fine structure (EXAFS) spectroscopy is required in many important fields of research, such as lattice distortion studies in colossal magnetic resistance materials, high-temperature superconductivity materials etc. However, based on the existing EXAFS data analysis methods, EXAFS has a spatial resolution limit of π/2Δk which is larger than 0.1 Å. In this paper a new data analysis method which can easily achieve sub-10 pm resolution is introduced. Theoretically, the resolution limit of the method is three times better than that normally available. The method is examined by numerical simulation and experimental data. As a demonstration, the LaFe1-xCrxO3 system (x = 0, 1/3, 2/3) is studied and the structural information of FeO6 octahedral distortion as a function of Cr doping is resolved directly from EXAFS, where a resolution better than 0.074 Šis achieved.

12.
J Synchrotron Radiat ; 20(Pt 2): 243-8, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23412480

RESUMEN

In combination with a single-crystal diamond anvil cell (DAC), a polycapillary half-lens (PHL) re-focusing optics has been used to perform high-pressure extended X-ray absorption fine-structure measurements. It is found that a large divergent X-ray beam induced by the PHL leads the Bragg glitches from single-crystal diamond to be broadened significantly and the intensity of the glitches to be reduced strongly so that most of the DAC glitches are efficiently suppressed. The remaining glitches can be easily removed by rotating the DAC by a few degrees with respect to the X-ray beam. Accurate X-ray absorption fine-structure (XAFS) spectra of polycrystalline Ge powder with a glitch-free energy range from -200 to 800 eV relative to the Ge absorption edge are obtained using this method at high pressures up to 23.7 GPa, demonstrating the capability of PHL optics in eliminating the DAC glitches for high-pressure XAFS experiments. This approach brings new possibilities to perform XAFS measurements using a DAC up to ultrahigh pressures.

13.
J Am Chem Soc ; 134(43): 17997-8003, 2012 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-23051636

RESUMEN

Whether and how nanoclusters possessing a rich diversity of possible geometric configurations can transform from one structural type to another are critical issues in cluster science. Here we demonstrate an icosahedral-to-cuboctahedral structural transformation of Au nanoclusters driven by changing the chemical environment. For icosahedral Au(13) clusters protected by a mixture of dodecanethiol and triphenylphosphine ligands, solvent exchange of ethanol by hexane leads to quick selective desorption of the thiolate layers from the cluster surface. The surviving Au cores then undergo a much slower energy-minimization process via structural rearrangement, stabilized in the cuboctahedral structure and protected by triphenylphosphine in the hexane environment. In response to the dramatically changed atomic structure, the character of the electronic structure of the Au clusters is converted from semiconducting to metallic. This work addresses the structure-property correlation and its strong dependence on the chemical environment for metal nanoclusters.


Asunto(s)
Oro/química , Hexanos/química , Nanopartículas del Metal/química , Estructura Molecular , Factores de Tiempo
14.
Environ Sci Technol ; 46(10): 5361-8, 2012 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-22489923

RESUMEN

Mercury uptake was induced in two cultivars of Brassica juncea under field conditions using thiosulfate. Analysis was conducted to better understand the mechanism of uptake, speciation of mercury in plants, and redistribution of mercury in the soil. Plant mercury and sulfur concentrations were increased after thiosulfate treatment, and a linear correlation between mercury and sulfur was observed. Mercury may be absorbed and transported in plants as the Hg-thiosulfate complex. The majority of mercury in treated plant tissues (two cultivars) was bound to sulfur in a form similar to ß-HgS (66-94%). Remaining mercury was present in forms similar to Hg-cysteine (1-10%) and Hg-dicysteine (8-28%). The formation of ß-HgS may relate to the transport and assimilation of sulfate in plant tissues. Mercury-thiosulfate complex could decompose to mercuric and sulfate ions in the presence of free protons inside the plasma membrane, while sulfide ions would be produced by the assimilation of sulfate. The concomitant presence of mercuric ions and S(2-) would precipitate ß-HgS. The mercury concentration in the rhizosphere decreased in the treated relative to the nontreated soil. The iron/manganese oxide and organic-bound fractions of soil mercury were transformed to more bioavailable forms (soluble and exchangeable and specifically sorbed) and taken up by plants.


Asunto(s)
Mercurio/aislamiento & purificación , Planta de la Mostaza/efectos de los fármacos , Planta de la Mostaza/metabolismo , Tiosulfatos/farmacología , Biodegradación Ambiental/efectos de los fármacos , Biomasa , Fraccionamiento Químico , China , Análisis de los Mínimos Cuadrados , Especificidad de Órganos/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/metabolismo , Rizosfera , Suelo/química , Azufre/análisis , Espectroscopía de Absorción de Rayos X
15.
Anal Chem ; 83(20): 7856-62, 2011 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-21805976

RESUMEN

Photoreduction is a major obstacle for using the X-ray absorption near-edge structure (XANES) fingerprint to perform metal speciation at the molecular level in biological and environmental samples, especially for metalloproteins. In this study, soft X-ray induced photoreduction was observed in organic Cu(II) compounds during XANES measurements in a third-generation synchrotron source. Next Cu L(3)-edge, O K-edge, and C K-edge XANES spectroscopy, together with the scanning transmission X-ray microscopy (STXM), were used to probe the specific radiation damage processes of Cu acetate with similar local structures to Cu metalloproteins. Breakup of the Cu-Cu bond was hypothesized for the initial photoreduction of Cu acetate. The following radiation damage of Cu acetate produced CuO and an organic Cu(I) compound with a C═C bond, and the further photoreduction of the resulting CuO to Cu metal was also demonstrated. Our results indicated the importance of consideration of photoreduction during soft XANES measurements for the solid state compounds with high valence metals. Reducing the radiation dose to ~0.1 MGy effectively prevented the photoreduction of organic Cu(II) compounds during these measurements. This proposed radiation damage mechanism in Cu acetate may be generally useful in explaining the photoreduction process in Cu metalloproteins.


Asunto(s)
Cobre/química , Espectroscopía de Absorción de Rayos X , Metaloproteínas/química , Compuestos Organometálicos/química , Oxidación-Reducción , Sincrotrones
16.
J Synchrotron Radiat ; 18(Pt 5): 728-32, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21862852

RESUMEN

Differential EXAFS (DiffEXAFS) is able to detect subtle atomic perturbations in the local area of the absorbing atom. Here a new method of performing DiffEXAFS experiments under the modulation of high pressure has been developed. Periodic pressure was achieved in the gasket with the help of a dynamic diamond anvil cell, and the measurements were conducted in common energy-scanning mode. This technique has been utilized on ZnSe at 4.8 GPa. The present results have demonstrated a good agreement with the equation of state of ZnSe, and revealed sensitivity to atomic displacements of one order higher in magnitude than that of conventional EXAFS.

17.
Guang Pu Xue Yu Guang Pu Fen Xi ; 31(2): 560-4, 2011 Feb.
Artículo en Zh | MEDLINE | ID: mdl-21510427

RESUMEN

Adsorption mechanisms of Pb on soil with high CaCO3 content were investigated by combined batch sorption and X-ray absorption fine structure (XAFS). Date from the batch equilibrium studies showed that Pb sorption was nonlinear and was well fitted to Langmiur isotherm. The XAFS data indicated that Pb could be adsorbed via the inner-sphere complex, the precipitation of calcium carbonate containing Pb (PbCaCO3), and outer-sphere Pb sorption complex. The formations of inner-sphere complexes and PbCaCO3 implied strong metal interactions with the surfaces the mechanistic reason for the affinity of Pb for CaCO3 as observed in macroscopic studies. At low metal concentration, 500 mg x L(-1) of initial Pb, radial distance of the first-shell Pb-O (R1) was 0.169 2 nm, however, at 1 000 mg x L(-1) of initial Pb, the R1 was 0.166 8 nm. These revealed that the percentage of inner-sphere complexes increased when the initial Pb was increased from 500 to 1 000 mg x L(-1).

18.
Nat Commun ; 12(1): 6118, 2021 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-34675195

RESUMEN

Uncovering the dynamics of active sites in the working conditions is crucial to realizing increased activity, enhanced stability and reduced cost of oxygen evolution reaction (OER) electrocatalysts in proton exchange membrane electrolytes. Herein, we identify at the atomic level potential-driven dynamic-coupling oxygen on atomically dispersed hetero-nitrogen-configured Ir sites (AD-HN-Ir) in the OER working conditions to successfully provide the atomically dispersed Ir electrocatalyst with ultrahigh electrochemical acidic OER activity. Using in-situ synchrotron radiation infrared and X-ray absorption spectroscopies, we directly observe that one oxygen atom is formed at the Ir active site with an O-hetero-Ir-N4 structure as a more electrophilic active centre in the experiment, which effectively promotes the generation of key *OOH intermediates under working potentials; this process is favourable for the dissociation of H2O over Ir active sites and resistance to over-oxidation and dissolution of the active sites. The optimal AD-HN-Ir electrocatalyst delivers a large mass activity of 2860 A gmetal-1 and a large turnover frequency of 5110 h-1 at a low overpotential of 216 mV (10 mA cm-2), 480-510 times larger than those of the commercial IrO2. More importantly, the AD-HN-Ir electrocatalyst shows no evident deactivation after continuous 100 h OER operation in an acidic medium.

19.
Guang Pu Xue Yu Guang Pu Fen Xi ; 30(12): 3425-9, 2010 Dec.
Artículo en Zh | MEDLINE | ID: mdl-21322254

RESUMEN

Combined batch sorption and in situ X-ray absorption fine structure (XAFS) provide direct assessment of the mechanisms for Pb(II) sorption at the soil-water interface under different pH conditions. The XAFS data indicated that the innersphere Pb sorption complex with ionic character (Pb4 (OH)4(4+)) dominated the Pb surface speciation, and the outer-sphere Pb sorption complex and the precipitation of calcium carbonate containing Pb(PbCaCO3) were also involved in the adsorption samples. Coordination number and radial distance of the first-shell Pb-O decreased from 0.172 7 to 0.166 6 nm and the percentage of inner-sphere complexes increased when the initial pH changed from 6.0 to 8.5, indicating that the mechanism of Pb(II) sorption by the soil was pH-dependent.

20.
Chem Commun (Camb) ; (4): 474-6, 2008 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-18188472

RESUMEN

Although the Gd ion in Gd@C(82) has been shown to lie above the C-C bond on the C(2) axis as an anomalous structure from the MEM/Rietveld analysis, the present XANES study reveals that it lies above the hexagon on the C(2) axis as a normal structure, and Gd oscillates around its equilibrium position with an amplitude increasing with temperature increase.


Asunto(s)
Fulerenos/química , Análisis Espectral/métodos , Gadolinio/química , Modelos Moleculares , Estructura Molecular , Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA