Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Anal Biochem ; 640: 114547, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35026146

RESUMEN

Tyrosine phenol-lyase (TPL) exhibits great potential in industrial biosynthesis of l-tyrosine and its derivates. To uncover and screen TPLs with excellent catalytic properties, there is unmet demand for development of facile and reliable screening system for TPL. Here we presented a novel assay format for the detection of TPL activity based on catechol 2,3-dioxygenase (C23O)-catalyzed reaction. Catechol released from TPL-catalyzed cleavage of 3,4-dihydroxy-l-phenylalanine (l-DOPA) was further oxidized by C23O to form 2-hydroxymuconate semialdehyde, which could be readily detected by spectrophotometric measurements at 375 nm. The assay achieved a unique balance between the ease of operation and superiority of analytical performances including linearity, sensitivity and accuracy. In addition, this assay enabled real-time monitoring of TPL activity with high efficiency and reliability. As C23O is highly specific towards catechol, a non-natural product of microorganism, the assay was therefore accessible to both crude cell extracts and the whole-cell system without elaborate purification steps of enzymes, which could greatly expedite discovery and engineering of TPLs. This study provided fundamental principle for high-throughput screening of other enzymes consuming or producing catechol derivatives.


Asunto(s)
Tirosina Fenol-Liasa
2.
Biotechnol Lett ; 43(7): 1265-1276, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33830386

RESUMEN

OBJECTIVE: To solve the bottleneck of plasmid instability during microbial fermentation of L-DOPA with recombinant Escherichia coli expressing heterologous tyrosine phenol lyase. RESULTS: The tyrosine phenol lyase from Fusobacterium nucleatum was constitutively expressed in E. coli and a fed-batch fermentation process with temperature down-shift cultivation was performed. Efficient strategies including replacing the original ampicillin resistance gene, as well as inserting cer site that is active for resolving plasmid multimers were applied. As a result, the plasmid stability was increased. The co-use of cer site on plasmid and kanamycin in culture medium resulted in proportion of plasmid containing cells maintained at 100% after fermentation for 35 h. The specific activity of tyrosine phenol lyase reached 1493 U/g dcw, while the volumetric activity increased from 2943 to 14,408 U/L for L-DOPA biosynthesis. CONCLUSIONS: The established strategies for plasmid stability is not only promoted the applicability of the recombinant cells for L-DOPA production, but also provides important guidance for industrial fermentation with improved microbial productivity.


Asunto(s)
Escherichia coli/crecimiento & desarrollo , Fusobacterium nucleatum/enzimología , Levodopa/metabolismo , Plásmidos/genética , Tirosina Fenol-Liasa/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Técnicas de Cultivo Celular por Lotes , Medios de Cultivo/química , Escherichia coli/genética , Fermentación , Fusobacterium nucleatum/genética , Ingeniería de Proteínas , Proteínas Recombinantes/metabolismo , Tirosina Fenol-Liasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA