Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(39): e2305883120, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37725637

RESUMEN

Inspired by the development of single-atom catalysts (SACs), the fabrication of multimetallic SACs can be a promising technical approach for the in situ electro-Fenton (EF) process. Herein, dual-functional atomically dispersed Mo-Fe sites embedded in carbon nitride (C3N5) (i.e., MoFe/C3N5) were synthesized via a facile SiO2 template method. The atomically isolated bimetallic configuration in MoFe/C3N5 was identified by combining the microscopic and spectroscopic techniques. The MoFe/C3N5 catalyst on the cathode exhibited a remarkable catalytic activity toward the three electron-dominated oxygen reduction reaction in sodium sulfate, leading to a highly effective EF reaction with a low overpotential for the removal of organic contaminants from wastewater. The new catalyst showed a superior performance over its conventional counterparts, owing to the dual functions of the dual-metal active sites. Density functional theory (DFT) analysis revealed that the dual-functional 50-MoFe/C3N5 catalyst enabled a synergistic action of the Mo-Fe dual single atomic centers, which can alter the adsorption/dissociation behavior and decrease the overall reaction barriers for effective organic oxidation during the EF process. This study not only sheds light on the controlled synthesis of atomically isolated catalyst materials but also provides deeper understanding of the structure-performance relationship of the nanocatalysts with dual active sites for the catalytic EF process. Additionally, the findings will promote the advanced catalysis for the treatment of emerging organic contaminants in water and wastewater.

2.
Neuroimage ; 294: 120627, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38723877

RESUMEN

Holistic and analytic thinking are two distinct modes of thinking used to interpret the world with relative preferences varying across cultures. While most research on these thinking styles has focused on behavioral and cognitive aspects, a few studies have utilized functional magnetic resonance imaging (fMRI) to explore the correlations between brain metrics and self-reported scale scores. Other fMRI studies used single holistic and analytic thinking tasks. As a single task may involve processing in spurious low-level regions, we used two different holistic and analytic thinking tasks, namely the frame-line task and the triad task, to seek convergent brain regions to distinguish holistic and analytic thinking using multivariate pattern analysis (MVPA). Results showed that brain regions fundamental to distinguish holistic and analytic thinking include the bilateral frontal lobes, bilateral parietal lobes, bilateral precentral and postcentral gyrus, bilateral supplementary motor areas, bilateral fusiform, bilateral insula, bilateral angular gyrus, left cuneus, and precuneus, left olfactory cortex, cingulate gyrus, right caudate and putamen. Our study maps brain regions that distinguish between holistic and analytic thinking and provides a new approach to explore the neural representation of cultural constructs. We provide initial evidence connecting culture-related brain regions with language function to explain the origins of cultural differences in cognitive styles.


Asunto(s)
Mapeo Encefálico , Encéfalo , Imagen por Resonancia Magnética , Pensamiento , Humanos , Pensamiento/fisiología , Masculino , Femenino , Adulto Joven , Mapeo Encefálico/métodos , Adulto , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen
3.
Anal Chem ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39140526

RESUMEN

Developing an activity detection platform for hyaluronidase (HAase) is crucial for diagnosing and treating cancer. However, traditional detection of HAase is based on changes in the flow rate caused by viscosity or requires complex modifications and processing, which limits the detection accuracy and sensitivity. Herein, hyaluronic acid (HA)-modified mesoporous-based heterochannels (mesoporous carbon-doped γ-Fe2O3 nanoparticles/anodized aluminum oxide, MC-γ-Fe2O3/AAO) featuring ordered 3D transport frameworks and a photothermal property were developed for high performance HAase detection. The HA molecules on the surface of the mesoporous layer provide abundant active sites for HAase detection. An improved ionic current was realized after enzymatic hydrolysis reactions between HA and HAase due to enhanced surface charges and more hydrophilicity, leading to highly sensitive and accurate HAase detection. Notably, the detection performance can be further upgraded with the assistance of the photothermal property of γ-Fe2O3. An amplified detection current signal was achieved owing to a synergistic effect between ion currents and photoresponsive currents. A wide linear detection range from 1 to 50 U/mL and a low detection limit of 0.348 U/mL were obtained, achieving a 2% improvement under illumination. Importantly, the heterochannels have also been successfully applied for HAase detection in fetal bovine serum samples, manifesting considerable application prospects. This work provides a new strategy in constructing photoresponsive nanochannels with a photothermal property for a highly efficient biosensing platform.

4.
Small ; 20(11): e2306910, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37926698

RESUMEN

Heterogeneous membranes play a crucial role in osmotic energy conversion by effectively reducing concentration polarization. However, most heterogeneous membranes mitigate concentration polarization through an asymmetric charge distribution, resulting in compromised ion selectivity. Herein, hetero-nanochannels with asymmetric wettability composed of 2D mesoporous carbon and graphene oxide are constructed. The asymmetric wettability of the membrane endows it with the ability to suppress the concentration polarization without degrading the ion selectivity, as well as achieving a diode-like ion transport feature. As a result, enhanced osmotic energy harvesting is achieved with a power density of 6.41 W m-2 . This represents a substantial enhancement of 102.80-137.85% when compared to homogeneous 2D membranes, surpassing the performance of the majority of reported 2D membranes. Importantly, the membrane can be further used for high-performance ionic power harvesting by regulating ion transport, exceeding previously reported data by 89.1%.

5.
Analyst ; 149(5): 1464-1472, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38284827

RESUMEN

Copper ions (Cu2+), as a crucial trace element, play a vital role in living organisms. Thus, the detection of Cu2+ is of great significance for disease prevention and diagnosis. Nanochannel devices with an excellent nanoconfinement effect show great potential in recognizing and detecting Cu2+ ions. However, these devices often require complicated modification and treatment, which not only damages the membrane structure, but also induces nonspecific, low-sensitivity and non-repeatable detection. Herein, a 2D MXene-carboxymethyl chitosan (MXene/CMC) freestanding membrane with ordered lamellar channels was developed by a super-assembly strategy. The introduction of CMC provides abundant space charges, improving the nanoconfinement effect of the nanochannel. Importantly, the CMC can chelate with Cu2+ ions, endowing the MXene/CMC with the ability to detect Cu2+. The formation of CMC-Cu2+ complexes decreases the space charges, leading to a discernible variation in the current signal. Therefore, MXene/CMC can achieve highly sensitive and stable Cu2+ detection based on the characteristics of nanochannel composition. The linear response range for Cu2+ detection is 10-9 to 10-5 M with a low detection limit of 0.095 nM. Notably, MXene/CMC was successfully applied for Cu2+ detection in real water and fetal bovine serum samples. This work provides a simple, highly sensitive and stable detection platform based on the properties of the nanochannel composition.


Asunto(s)
Quitosano , Nitritos , Oligoelementos , Elementos de Transición , Cobre , Quitosano/química , Iones/química
6.
Analyst ; 149(13): 3522-3529, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38787653

RESUMEN

Bioinspired nanochannel-based sensors have elicited significant interest because of their excellent sensing performance, and robust mechanical and tunable chemical properties. However, the existing designs face limitations due to material constraints, which hamper broader application possibilities. Herein, a heteromembrane system composed of a periodic mesoporous organosilica (PMO) layer with three-dimensional (3D) network nanochannels is constructed for glutathione (GSH) detection. The unique hierarchical pore architecture provides a large surface area, abundant reaction sites and plentiful interconnected pathways for rapid ionic transport, contributing to efficient and sensitive detection. Moreover, the thioether groups in nanochannels can be selectively cleaved by GSH to generate hydrophilic thiol groups. Benefiting from the increased hydrophilic surface, the proposed sensor achieves efficient GSH detection with a detection limit of 1.2 µM by monitoring the transmembrane ionic current and shows good recovery ranges in fetal bovine serum sample detection. This work paves an avenue for designing and fabricating nanofluidic sensing systems for practical and biosensing applications.


Asunto(s)
Glutatión , Límite de Detección , Compuestos de Organosilicio , Glutatión/química , Glutatión/análisis , Glutatión/sangre , Porosidad , Compuestos de Organosilicio/química , Animales , Bovinos , Técnicas Biosensibles/métodos , Membranas Artificiales , Técnicas Electroquímicas/métodos
7.
Inorg Chem ; 63(27): 12658-12666, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38916863

RESUMEN

Phosphonate-based nerve agents, as a kind of deadly chemical warfare agent, are a persistent and evolving threat to humanity. Zirconium-based metal-organic frameworks (Zr-MOFs) are a kind of highly porous crystalline material that includes Zr-OH-Zr sites and imitates the active sites of the phosphotriesterase enzyme, representing significant potential for the adsorption and catalytic hydrolysis of phosphonate-based nerve agents. In this work, we present a new Zr-MOF, UiO-66-2I, which attaches two iodine atoms in the micropore of the MOF and exhibits excellent catalytic activity on the degradation of a nerve agent simulant, dimethyl 4-nitrophenyl phosphate (DMNP), as the result of the formation of halogen bonds between the phosphate ester bonds and iodine groups. Furthermore, various morphologies of UiO-66-2I, such as blocky-shaped nanoparticles (NPs), two-dimensional (2D) nanosheets, hexahedral NPs, stick-like NPs, colloidal microspheres, and colloidal NPs, have been obtained by adding acetic acid (AA), formic acid (FA), propionic acid (PA), valeric acid (VA), benzoic acid (BA), and trifluoroacetic acid (TFA) as modulators, respectively, and show different catalytic hydrolysis activities. Specifically, the catalytic activities follow the trend UiO-66-2I-FA (t1/2 = 1 min) > UiO-66-2I-AA-NP (t1/2 = 4 min) ≈ UiO-66-2I-VA (t1/2 = 4 min) > UiO-66-2I-BA (t1/2 = 5 min) > UiO-66-2I-PA (t1/2 = 15 min) > UiO-66-2I-TFA (t1/2 = 18 min). The experimental results show that the catalytic hydrolysis activity of Zr-MOF is regulated by the crystallinity, defect quantity, morphologies, and hydrophilicity of these samples, which synergistically affect the accessibility of catalytic sites and the diffusion of phosphate in the pores of Zr-MOFs.

8.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-34244428

RESUMEN

The emerging field of regenerative cell therapy is still limited by the few cell types that can reliably be differentiated from pluripotent stem cells and by the immune hurdle of commercially scalable allogeneic cell therapeutics. Here, we show that gene-edited, immune-evasive cell grafts can survive and successfully treat diseases in immunocompetent, fully allogeneic recipients. Transplanted endothelial cells improved perfusion and increased the likelihood of limb preservation in mice with critical limb ischemia. Endothelial cell grafts transduced to express a transgene for alpha1-antitrypsin (A1AT) successfully restored physiologic A1AT serum levels in mice with genetic A1AT deficiency. This cell therapy prevented both structural and functional changes of emphysematous lung disease. A mixture of endothelial cells and cardiomyocytes was injected into infarcted mouse hearts, and both cell types orthotopically engrafted in the ischemic areas. Cell therapy led to an improvement in invasive hemodynamic heart failure parameters. Our study supports the development of hypoimmune, universal regenerative cell therapeutics for cost-effective treatments of major diseases.


Asunto(s)
Enfermedades Cardiovasculares/inmunología , Enfermedades Cardiovasculares/terapia , Inmunocompetencia , Células Madre Pluripotentes Inducidas/inmunología , Enfermedades Pulmonares/inmunología , Enfermedades Pulmonares/terapia , Trasplante de Células Madre , Animales , Células Endoteliales/trasplante , Insuficiencia Cardíaca/terapia , Miembro Posterior/irrigación sanguínea , Miembro Posterior/patología , Isquemia/patología , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Miocitos Cardíacos/trasplante , Trasplante Homólogo , alfa 1-Antitripsina/metabolismo
9.
BMC Nurs ; 23(1): 531, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095727

RESUMEN

BACKGROUND: Burnout is very important to nurses' physical and mental health and career development. Current approaches to assessing nurse burnout tend to use a total score modeling paradigm to explore the impact of external factors on burnout. The purpose of this study is to delve into the item-level relationship between nurse burnout and its influencing factors at both the social and psychological levels using a network analysis approach. METHODS: This study was conducted in June 2023 and 1,005 nurses from 4 hospitals out of 8 tertiary care hospitals in Harbin were selected to participate in this study using whole cluster sampling method. Measurements included a general demographic questionnaire, Trait coping styles questionnaire, Organizational commitment questionnaire, Work-family conflict scale, Transformational leadership questionnaire, and Maslach Burnout Inventory-General Survey. RESULTS: Our results suggest that "C1 Time-Based work interference with family" showed the strongest centrality and bridging in the overall network. This finding underscores its centrality to burnout. Other strongest bridge symptoms included "E2 Reduced personal accomplishment" and "A1 Positive coping styles" indicating their strongest connections to other clusters. CONCLUSIONS: Nurse administrators should be encouraged to pay more attention to nurses' work situations and family distress, and to help nurses in a flexible way.

10.
BMC Nurs ; 23(1): 508, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39075483

RESUMEN

BACKGROUND: The aims of the present study were to investigate the incidence of nurses who suffered anxiety during the COVID-19 pandemic and to explore how expressive suppression influences the relationship between family function and anxiety. METHODS: This study used cross-sectional research and simple random sampling. A total of 300 questionnaires were distributed and 254 questionnaires were qualified after invalid questionnaires were proposed, thus a total of 254 female nurses from a tertiary hospital were included in this study. The measurement included General demographic questionnaires, the Self-Scale Anxiety, Scale (SAS), Emotion Regulation Strategies Questionnaire (ERQ), and Family Function Assessment (FAD). T-test, nonparametric Wilcoxon or Kruskal-Wallis test, χ2 test, Pearson or Spearman correlation analysis, multiple stepwise regression and bootstrap methods was performed to analyze the data. RESULTS: In this study, 22.4% of the nurses exhibited anxiety symptoms, with 17.7% eliciting mild anxiety symptoms, 4.3% showing moderate anxiety symptoms and 0.4% with severe anxiety symptoms. Family function and expressive suppression were positively associated with anxiety severity. And family function influenced anxiety among nurses via direct and indirect (Expressive suppression -mediated) pathways. CONCLUSIONS: Expressive suppression partially mediated the influence of family function on anxiety symptom. To this end, nurse administrators should establish a robust mental health support system encompassing psychological counseling and emotional support groups. Furthermore, nurse administrators should consistently inquire about nurses' family situations, encourage nurses to articulate their emotions and needs candidly, both within the domestic sphere and the workplace, while refraining from excessive self-repression.

11.
Plant Mol Biol ; 112(1-2): 85-98, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37103774

RESUMEN

The Orchidaceae is a large family of perennial herbs especially noted for the exceptional diversity of specialized flowers. Elucidating the genetic regulation of flowering and seed development of orchids is an important research goal with potential utility in orchid breeding programs. Auxin Response Factor (ARF) genes encode auxin-responsive transcription factors, which are involved in the regulation of diverse morphogenetic processes, including flowering and seed development. However, limited information on the ARF gene family in the Orchidaceae is available. In this study, 112 ARF genes were identified in the genomes of 5 orchid species (Apostasia shenzhenica, Dendrobium catenatum, Phalaenopsis aphrodite, Phalaenopsis equestris and Vanilla planifolia,). These genes were grouped into 7 subfamilies based on their phylogenetic relationships. Compared with the ARF family in model plants, such as Arabidopsis thaliana and Oryza sativa, one group of ARF genes involved in pollen wall synthesis has been lost during evolution of the Orchidaceae. This loss corresponds with absence of the exine in the pollinia. Through mining of the published genomic and transcriptomic data for the 5 orchid species: the ARF genes of subfamily 4 may play an important role in flower formation and plant growth, whereas those of subfamily 3 are potentially involved in pollen wall development. the study results provide novel insights into the genetic regulation of unique morphogenetic phenomena of orchids, which lay a foundation for further analysis of the regulatory mechanisms and functions of sexual reproduction-related genes in orchids.


Asunto(s)
Orchidaceae , Orchidaceae/genética , Transcriptoma , Filogenia , Fitomejoramiento , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Flores/genética , Flores/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
12.
Biofouling ; 39(4): 359-370, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37293733

RESUMEN

Despite the importance of outer membrane vesicles (OMVs) in benthic animal settlement, the underlying molecular mechanism remains elusive. Here, the impact of OMVs and OMVs synthesis-related tolB gene in Mytilus coruscus plantigrade settlement was tested. The OMVs were extracted from Pseudoalteromonas marina through density gradient centrifugation, and a tolB knockout strain, achieved by homologous recombination, was utilized for the investigation. Our results demonstrated that OMVs could significantly enhance M. coruscus plantigrades settlement. Deleting the tolB resulted in downregulation of c-di-GMP, accompanied by a reduction of OMV production, a decline in bacterial motility and increasing biofilm-forming ability. Enzyme treatment resulted in a 61.11% reduction in OMV-inducing activity and a 94.87% reduction in LPS content. Thus, OMVs regulate mussel settlement via LPS, and c-di-GMP is responsible for the OMV-inducing capacity. These findings provide new insights into the interactions between bacteria and mussels.


Asunto(s)
GMP Cíclico , Mytilus , Animales , Proteínas de la Membrana Bacteriana Externa/genética , Biopelículas , GMP Cíclico/metabolismo , Lipopolisacáridos , Mytilus/genética , Mytilus/fisiología
13.
BMC Public Health ; 23(1): 2277, 2023 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-37978471

RESUMEN

BACKGROUND: The relationship between the Coronavirus Disease 2019 (COVID-19) pandemic, which is a traumatic event for adolescents, and procrastination is not clear. Mental health may play an important role in this relationship; however, the underlying mechanisms remain unknown. This study aimed to construct chain mediation models to examine whether anxiety and depression symptoms mediate the effects of the COVID-19 pandemic on procrastination in adolescents. METHODS: A convenience sample of 12 middle and high schools in Harbin, China, with four follow-up online surveys was conducted during the COVID-19 pandemic. A total of 4,156 Chinese adolescents were enrolled in this study, of whom ages 11-18 (Mean = 13.55; SD = 1.18), 50.75% were male, and 93.24% were middle school students. Descriptive demographic analysis and Pearson's correlation analysis of the effects of the COVID-19 pandemic (T1), anxiety(T2), depression (T3), and procrastination (T4) were performed in SPSS 22.0. Chain mediation analysis performed with Mplus 8.3. RESULTS: The effects of the COVID-19 pandemic, anxiety symptoms, depression symptoms, and procrastination were positively correlated (P < 0.01). The effects of the COVID-19 pandemic have a direct link on adolescent procrastination (effect = 0.156; SE = 0.031; 95%CI: 0.092, 0.214), and have three indirect paths on procrastination: the independent mediating role of anxiety symptoms was 29.01% (effect = 0.047; SE = 0.012; 95%CI: 0.024, 0.072), the independent mediating role of depression symptoms was 29.01% (effect = 0.047; SE = 0.010; 95%CI: 0.030, 0.068), as well as the completely chain mediating role of anxiety and depression symptoms was 15.43% (effect = 0.025; SE = 0.005; 95%CI: 0.017, 0.036). CONCLUSIONS: Our results suggest that anxiety and depressive symptoms are part of a causal chain between the effects of the COVID-19 pandemic and procrastination among Chinese adolescents. To effectively reduce their procrastination, attention should be paid to the emotional distress caused to adolescents by major events such as the COVID-19 epidemic. All data were taken from self-reported measures and one city in China, which may bias the results and limit their generalizability.


Asunto(s)
COVID-19 , Procrastinación , Adolescente , Masculino , Humanos , Femenino , Pandemias , Estudios Longitudinales , Depresión/epidemiología , COVID-19/epidemiología , Ansiedad/epidemiología , China/epidemiología
14.
Mar Drugs ; 21(2)2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36827146

RESUMEN

The aim of this study was to investigate the protective function and mechanism of TCP3 (PKK), TCP6 (YEGGD) and TCP9 (GPGLM) from skipjack tuna cardiac arterial bulbs on skin photoaging using UVB-irradiated HaCaT cell model. The present results indicated that TCP3 (PKK), TCP6 (YEGGD) and TCP9 (GPGLM) had significant cytoprotective effect on UVB-irradiated HaCaT cells (p < 0.001). Hoechst 33342 staining showed that apoptosis of UV-irradiated HaCaT cells could be significantly reduced by the treatment of TCP3 (PKK), TCP6 (YEGGD) and TCP9 (GPGLM); JC-1 staining showed that TCP3 (PKK), TCP6 (YEGGD) and TCP9 (GPGLM) could protect HaCaT cells from apoptosis by restoring mitochondrial membrane potential (MMP); Furthermore, TCP3 (PKK), TCP6 (YEGGD) and TCP9 (GPGLM) could significantly down-regulate the ratio of Bax/Bcl-2 and reduce the expression level of the apoptosis-executing protein Caspase-3 by decreasing the expression of protein Caspase-8 and Caspase-9 (p < 0.05). The action mechanism indicated that TCP3 (PKK), TCP6 (YEGGD) and TCP9 (GPGLM) could up-regulate the expression levels of Nrf2, NQO1 and HO-1 (p < 0.05), which further increased the activity of downstream proteases (SOD, CAT and GSH-Px), and scavenged reactive oxygen species (ROS) and decreased the intracellular levels of malondialdehyde (MDA). In addition, molecular docking indicated that TCP3 (PKK) and TCP6 (YEGGD) could competitively inhibit the Nrf2 binding site because they can occupy the connection site of Nrf2 by binding to the Kelch domain of Keap1 protein. TCP9 (GPGLM) was inferred to be non-competitive inhibition because it could not bind to the active site of the Kelch domain of Keap1 protein. In summary, the antioxidant peptides TCP3 (PKK), TCP6 (YEGGD) and TCP9 (GPGLM) from cardiac arterial bulbs of skipjack tuna can effectively protect HaCaT cells from UVB-irradiated damage and can be used in the development of healthy and cosmetic products to treat diseases caused by UV radiation.


Asunto(s)
Antioxidantes , Queratinocitos , Animales , Humanos , Antioxidantes/farmacología , Células HaCaT , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Atún/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Simulación del Acoplamiento Molecular , Péptidos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Apoptosis , Rayos Ultravioleta
15.
Int J Mol Sci ; 24(8)2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37108636

RESUMEN

The outer membrane protein (OMP) is a kind of biofilm matrix component that widely exists in Gram-negative bacteria. However, the mechanism of OMP involved in the settlement of molluscs is still unclear. In this study, the mussel Mytilus coruscus was selected as a model to explore the function of ompR, a two-component system response regulator, on Pseudoalteromonas marina biofilm-forming capacity and the mussel settlement. The motility of the ΔompR strain was increased, the biofilm-forming capacity was decreased, and the inducing activity of the ΔompR biofilms in plantigrades decreased significantly (p < 0.05). The extracellular α-polysaccharide and ß-polysaccharide of the ΔompR strain decreased by 57.27% and 62.63%, respectively. The inactivation of the ompR gene decreased the ompW gene expression and had no impact on envZ expression or c-di-GMP levels. Adding recombinant OmpW protein caused the recovery of biofilm-inducing activities, accompanied by the upregulation of exopolysaccharides. The findings deepen the understanding of the regulatory mechanism of bacterial two-component systems and the settlement of benthic animals.


Asunto(s)
Biopelículas , Mytilus , Animales , Mytilus/genética , Mytilus/microbiología , Bacterias/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
16.
Nurs Ethics ; 30(7-8): 922-938, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37632155

RESUMEN

BACKGROUND: "Crisis military deployment" was defined as a situation in which military personnel are suddenly ordered to duty to support an operation away from their home station and in a potentially dangerous environment. As a result of complex changes in the global political and economic landscape, military nurses are assuming an increasing number of crisis military deployment tasks. Moral distress has been widely studied among civilian nurses. However, little is known about the moral distress military nurses experience during military deployments in crisis. AIM: This review discussed the current state of research on the phenomenon, unique factors, specific sources, and measurement tools. METHODS: The scope of the study was defined using a framework developed by Arksey and O'Malley. Following English databases were searched: PubMed, CINAHL, Cochrane Library, Web of Science, and Embase, using MeSH terms and free word combinations; furthermore, Chinese databases: CNKI and CBMDisc, were explored using thematic terms from inception until January 20, 2023. Data were selected and defined by the inclusion and exclusion criteria and independently screened by two researchers. ETHICAL CONSIDERATIONS: The scoping review adhered to sound scientific practice and respected authorship and reference sources. RESULTS: Finally, 21 articles were included in the review. The moral distress of military nurses in crisis military deployments had unique and specific sources and reported positive aspects. The deployment environment and nature of the mission, responsibilities and obligations of military nurses, and the limited rights of patients were unique factors. Specific sources included third-party intervention, military triage, resource allocation, futile care, care of the enemy, and return to the battlefield. Military nurses in deployment reported positive aspects. They grow in their inner strength, build deep friendships and gain a greater sense of professional value. CONCLUSION: It is important to understand the unique factors and specific sources of moral distress faced by military nurses in crisis military deployments and to identify the positive aspects. This research will help prepare military nurses for future deployments in advance by providing useful information to mitigate and eliminate moral distress.


Asunto(s)
Ética en Enfermería , Despliegue Militar , Personal Militar , Enfermeras y Enfermeros , Humanos , Principios Morales , Enfermeras y Enfermeros/psicología
17.
Mar Drugs ; 20(10)2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36286450

RESUMEN

Cardiac arterial bulbs of Skipjack tuna (Katsuwonus pelamis) are rich in elastin, and its hydrolysates are high quality raw materials for daily cosmetics. In order to effectively utilizing Skipjack tuna processing byproducts-cardiac arterial bulbs and to prepare peptides with high antioxidant activity, pepsin was selected from six proteases for hydrolyzing proteins, and the best hydrolysis conditions of pepsin were optimized. Using ultrafiltration and chromatographic methods, eleven antioxidant peptides were purified from protein hydrolysate of tuna cardiac arterial bulbs. Four tripeptides (QGD, PKK, GPQ and GLN) were identified as well as seven pentapeptides (GEQSN, GEEGD, YEGGD, GEGER, GEGQR, GPGLM and GDRGD). Three out of them, namely the tripeptide PKK and the pentapeptides YEGGD and GPGLM exhibited the highest radical scavenging activities on 2,2-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl, 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and superoxide anion assays. They also showed to protect plasmid DNA and HepG2 cells against H2O2-induced oxidative stress. Furthermore, they exhibited high stability under temperature ranged from 20-100 °C, pH values ranged from 3-11, and they simulated gastrointestinal digestion for 240 min. These results suggest that the prepared eleven antioxidant peptides from cardiac arterial bulbs, especially the three peptides PKK, YEGGD, and GPGLM, could serve as promising candidates in health-promoting products due to their high antioxidant activity and their stability.


Asunto(s)
Antioxidantes , Hidrolisados de Proteína , Animales , Antioxidantes/química , Hidrolisados de Proteína/química , Atún/metabolismo , Elastina , Superóxidos/metabolismo , Peroxidación de Lípido , Pepsina A , Peróxido de Hidrógeno/metabolismo , Péptidos/química , Péptido Hidrolasas/metabolismo , Ácidos Sulfónicos , Concentración de Iones de Hidrógeno , Digestión , ADN/metabolismo
18.
Environ Toxicol ; 37(4): 776-788, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34936186

RESUMEN

Simazine is a widely used herbicide and known as an environmental estrogen. Multiple studies have proved simazine can induced the degeneration of dopaminergic neuron resulting in a degenerative disease-like syndrome. Herein, we explored the neurotoxicity of simazine on the dopaminergic nervous system of embryos and weaned offspring during the maternal gestation period or the maternal gestation and lactation periods. We found that simazine disturbed the crucial components expression involved in Lmx1a/Wnt1 pathway of dopaminergic neuron in embryonic and weaned offspring. Furthermore, morphological and behavioral tests performed on weaned male offspring treated by simazine suggested that the grip strength, autonomic exploring, and the space sense ability were weakened, as well as the pathological damage of dopaminergic neuron was clearly observed. But, the same neurotoxicity of simazine is less significantly observed in female offspring. Our findings will provide reliable reference for the determination of environmental limits and new insight into the pathogenesis of nonfamilial neurodegenerative diseases related to environmental risk factors.


Asunto(s)
Herbicidas , Simazina , Animales , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Femenino , Herbicidas/toxicidad , Proteínas con Homeodominio LIM/metabolismo , Masculino , Ratones , Simazina/metabolismo , Simazina/toxicidad , Factores de Transcripción/metabolismo
19.
Biofouling ; 37(8): 911-921, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34620016

RESUMEN

The molecular mechanism underlying modulation of metamorphosis of the bivalve Mytilus coruscus by bacteria remains unclear. Here, the functional role of the thioesterase gene tesA of the bacterium Pseudoalteromonas marina in larval metamorphosis was examined. The aim was to determine whether inactivation of the tesA gene altered the biofilm-inducing capacity, bacterial cell motility, biopolymers, or the intracellular c-di-GMP levels. Complete inactivation of tesA increased the c-di-GMP content in P. marina, accompanied by a reduced fatty acid content, weaker motility, upregulation of bacterial aggregation, and biofilm formation. The metamorphosis rate of mussel larvae on ΔtesA biofilms was reduced by ∼ 80% compared with those settling on wild-type P. marina. Exogenous addition of a mixture of extracted fatty acids from P. marina into the ΔtesA biofilms promoted the biofilm-inducing capacity. This study suggests that the bacterial thioesterase gene tesA altered the fatty acid composition of ΔtesA P. marina biofilms (BF) through regulation of its c-di-GMP, subsequently impacting mussel metamorphosis.


Asunto(s)
Mytilus , Pseudoalteromonas , Animales , Proteínas Bacterianas/genética , Biopelículas , GMP Cíclico , Ácidos Grasos , Regulación Bacteriana de la Expresión Génica , Metamorfosis Biológica , Mytilus/metabolismo , Pseudoalteromonas/metabolismo
20.
Mar Drugs ; 18(3)2020 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-32164197

RESUMEN

In the work, defatted muscle proteins of monkfish (Lophius litulon) were separately hydrolyzed by pepsin, trypsin, and in vitro gastrointestinal (GI) digestion methods, and antioxidant peptides were isolated from proteins hydrolysate of monkfish muscle using ultrafiltration and chromatography processes. The antioxidant activities of isolated peptides were evaluated using radical scavenging and lipid peroxidation assays and H2O2-induced model of HepG2 cells. In which, the cell viability, reactive oxygen species (ROS) content, and antioxidant enzymes and malondialdehyde (MDA) levels were measured for evaluating the protective extent on HepG2 cells damaged by H2O2. The results indicated that the hydrolysate (MPTH) prepared using in vitro GI digestion method showed the highest degree of hydrolysis (27.24 ± 1.57%) and scavenging activity on a 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical (44.54 ± 3.12%) and hydroxyl radical (41.32 ± 2.73%) at the concentration of 5 mg protein/mL among the three hydrolysates. Subsequently, thirteen antioxidant peptides (MMP-1 to MMP-13) were isolated from MPTH. According to their DPPH radical and hydroxyl radical scavenging activity, three peptides with the highest antioxidant activity were selected and identified as EDIVCW (MMP-4), MEPVW (MMP-7), and YWDAW (MMP-12) with molecular weights of 763.82, 660.75, and 739.75 Da, respectively. EDIVCW, MEPVW, and YWDAW showed high scavenging activities on DPPH radical (EC50 0.39, 0.62, and 0.51 mg/mL, respectively), hydroxyl radical (EC50 0.61, 0.38, and 0.32 mg/mL, respectively), and superoxide anion radical (EC50 0.76, 0.94, 0.48 mg/mL, respectively). EDIVCW and YWDAW showed equivalent inhibiting ability on lipid peroxidation with glutathione in the linoleic acid model system. Moreover, EDIVCW, MEPVW, and YWDAW had no cytotoxicity to HepG2 cells at the concentration of 100.0 µM and could concentration-dependently protect HepG2 cells from H2O2-induced oxidative damage through decreasing the levels of reactive oxygen species (ROS) and MDA and activating intracellular antioxidant enzymes of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px). These present results indicated that the protein hydrolysate and isolated antioxidant peptides from monkfish muscle, especially YWDAW could serve as powerful antioxidants applied in the treatment of some liver diseases and healthcare products associated with oxidative stress.


Asunto(s)
Antioxidantes/farmacología , Peces , Músculo Esquelético/química , Péptidos/farmacología , Hidrolisados de Proteína/farmacología , Animales , Antioxidantes/química , Supervivencia Celular/efectos de los fármacos , Depuradores de Radicales Libres/farmacología , Células Hep G2 , Humanos , Peróxido de Hidrógeno/toxicidad , Peroxidación de Lípido/efectos de los fármacos , Metaloproteinasas de la Matriz/química , Péptidos/química , Sustancias Protectoras/farmacología , Hidrolisados de Proteína/química , Especies Reactivas de Oxígeno/metabolismo , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA