Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Small ; 20(5): e2304424, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37726235

RESUMEN

Peptide assemblies are promising nanomaterials, with their properties and technological applications being highly hinged on their supramolecular architectures. Here, how changing the chirality of the terminal charged residues of an amphiphilic hexapeptide sequence Ac-I4 K2 -NH2 gives rise to distinct nanostructures and supramolecular handedness is reported. Microscopic imaging and neutron scattering measurements show thin nanofibrils, thick nanofibrils, and wide nanotubes self-assembled from four stereoisomers. Spectroscopic and solid-state nuclear magnetic resonance (NMR) analyses reveal that these isomeric peptides adopt similar anti-parallel ß-sheet secondary structures. Further theoretical calculations demonstrate that the chiral alterations of the two C-terminal lysine residues cause the formation of diverse single ß-strand conformations, and the final self-assembled nanostructures and handedness are determined by the twisting direction and degree of single ß-strands. This work not only lays a useful foundation for the fabrication of diverse peptide nanostructures by manipulating the chirality of specific residues but also provides a framework for predicting the supramolecular structures and handedness of peptide assemblies from single molecule conformations.


Asunto(s)
Lateralidad Funcional , Nanoestructuras , Péptidos/química , Nanoestructuras/química , Isomerismo , Estructura Secundaria de Proteína
2.
Biomacromolecules ; 25(3): 1602-1611, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38323536

RESUMEN

Helicobacter pylori can cause various gastric conditions including stomach cancer in an acidic environment. Although early H. pylori infections can be treated by antibiotics, prolonged antibiotic administrations may lead to the development of antimicrobial resistance, compromising the effectiveness of the treatments. Antimicrobial peptides (AMPs) have been reported to possess unique advantages against antimicrobial-resistant bacteria due to their rapid physical membrane disruptions and anti-inflammation/immunoregulation properties. Herein, we have developed an AMP hydrogel, which can be orally administered for the treatment of H. pylori infection. The hydrogel has potent antimicrobial activity against H. pylori, achieving bacterial eradication within minutes of action. Compared with the AMP solution, the hydrogel formulation significantly reduced the cytotoxicity and enhanced proteolytic stability. In vivo experiments suggested that the hydrogel formed at pH 4 had superior therapeutic effects to those at pH 7 and 10 hydrogels, attributed to its rapid release and bactericidal action within the acidic stomach environment. Compared to conventional antibiotic treatments, the AMP hydrogel had the advantages of fast bacterial killing in the gastric juice and obviated proton pump inhibitors during the treatment. Although both the AMP hydrogel and antibiotics suppressed the expression of pro-inflammatory cytokines, the former uniquely promoted inflammation resolution. These results indicate that the AMP hydrogels with effectiveness and biosafety may be potential candidates for the clinical treatment of H. pylori infections.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Humanos , Infecciones por Helicobacter/tratamiento farmacológico , Infecciones por Helicobacter/metabolismo , Infecciones por Helicobacter/microbiología , Péptidos Antimicrobianos , Hidrogeles/farmacología , Hidrogeles/uso terapéutico , Antibacterianos
3.
Small ; 19(3): e2204428, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36417574

RESUMEN

Recent developments in antimicrobial peptides (AMPs) have focused on the rational design of short sequences with less than 20 amino acids due to their relatively low synthesis costs and ease of correlation of the structure-function relationship. However, gaps remain in the understanding of how short cationic AMPs interact with the bacterial outer and inner membranes to affect their antimicrobial efficacy and dynamic killing. The membrane-lytic actions of two designed AMPs, G(IIKK)3 I-NH2 (G3 ) and G(IIKK)4 I-NH2 (G4 ), and previously-studied controls GLLDLLKLLLKAAG-NH2 (LDKA, biomimetic) and GIGAVLKVLTTGLPALISWIKRKR-NH2 (Melittin, natural) are examined. The mechanistic processes of membrane damage and the disruption strength of the four AMPs are characterized by molecular dynamics simulations and experimental measurements including neutron reflection and scattering. The results from the combined studies are characterized with distinctly different intramembrane nanoaggregates formed upon AMP-specific binding, reflecting clear influences of AMP sequence, charge and the chemistry of the inner and outer membranes. G3 and G4 display different nanoaggregation with the outer and inner membranes, and the smaller sizes and further extent of insertion of the intramembrane nanoaggregates into bacterial membranes correlate well with their greater antimicrobial efficacy and faster dynamic killing. This work demonstrates the crucial roles of intramembrane nanoaggregates in optimizing antimicrobial efficacy and dynamic killing.


Asunto(s)
Antiinfecciosos , Péptidos Antimicrobianos , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Antiinfecciosos/farmacología , Bacterias , Simulación de Dinámica Molecular
4.
Mol Pharm ; 20(5): 2502-2512, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37012645

RESUMEN

Interfacial adsorption of monoclonal antibodies (mAbs) can cause structural deformation and induce undesired aggregation and precipitation. Nonionic surfactants are often added to reduce interfacial adsorption of mAbs which may occur during manufacturing, storage, and/or administration. As mAbs are commonly manufactured into ready-to-use syringes coated with silicone oil to improve lubrication, it is important to understand how an mAb, nonionic surfactant, and silicone oil interact at the oil/water interface. In this work, we have coated a polydimethylsiloxane (PDMS) nanofilm onto an optically flat silicon substrate to facilitate the measurements of adsorption of a model mAb, COE-3, and a commercial nonionic surfactant, polysorbate 80 (PS-80), at the siliconized PDMS/water interface using spectroscopic ellipsometry and neutron reflection. Compared to the uncoated SiO2 surface (mimicking glass), COE-3 adsorption to the PDMS surface was substantially reduced, and the adsorbed layer was characterized by the dense but thin inner layer of 16 Å and an outer diffuse layer of 20 Å, indicating structural deformation. When PS-80 was exposed to the pre-adsorbed COE-3 surface, it removed 60 wt % of COE-3 and formed a co-adsorbed layer with a similar total thickness of 36 Å. When PS-80 was injected first or as a mixture with COE-3, it completely prevented COE-3 adsorption. These findings reveal the hydrophobic nature of the PDMS surface and confirm the inhibitory role of the nonionic surfactant in preventing COE-3 adsorption at the PDMS/water interface.


Asunto(s)
Anticuerpos Monoclonales , Tensoactivos , Tensoactivos/química , Adsorción , Anticuerpos Monoclonales/química , Dióxido de Silicio , Aceites de Silicona/química , Polisorbatos/química , Dimetilpolisiloxanos
5.
J Am Chem Soc ; 144(47): 21544-21554, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36345816

RESUMEN

Peptide self-assembly is a hierarchical process during which secondary structures formed in the initial stages play a critical role in determining the subsequent assembling processes and final structural ordering. Unusual secondary structures hold promise as a source to develop novel supramolecular architectures with unique properties. In this work, we report the design of a new peptide self-assembly strategy based on unusual α-sheet secondary structures. In light of the strong propensity of leucine toward forming helical conformations and its high hydrophobicity, we design two short amphiphilic peptides Ac-LDLLDLK-NH2 and Ac-DLLDLLDK-NH2 with alternating l- and d-form amino acids. Microscopic imaging, neutron scattering, and spectroscopic measurements indicate that the two heterochiral peptides form highly ordered wide nanotubes and helical ribbons with monolayer thickness, in sharp contrast to twisted nanofibrils formed by the homochiral peptide Ac-LLLLK-NH2. Molecular dynamics simulations from monomers to trimers reveal that the two heteropeptides fold into α-sheets instead of ß-sheets, which readily pack into tubular architectures in oligomer simulations. Simulated circular dichroism spectra based on α-sheet oligomers validate the proposed α-sheet secondary structures. These results form an important basis for the rational design of higher-order peptide assemblies with novel properties based on unusual α-sheet secondary structures.


Asunto(s)
Aminoácidos , Péptidos , Péptidos/química , Estructura Secundaria de Proteína , Dicroismo Circular , Conformación Proteica en Lámina beta
6.
Small ; 18(49): e2204081, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36310130

RESUMEN

Wide bandgap (WBG) perovskites through tuning iodine/bromine ratios are capable of merging with narrow bandgap organic bulk heterojunctions to construct tandem solar cells to overcome the Shockley-Queisser limitation. However, WBG perovskites readily suffer from light-induced halide ion migration, leading to detrimental phase segregation and hence severe open-circuit voltage (VOC ) loss. Here, to solve this issue, lead thiocyanate (Pb(SCN)2 ) and 2-thiopheneethylammonium chloride (TEACl) are synergistically employed to passivate and stabilize WBG perovskites with 1.79 eV bandgap. It is demonstrated that the synergetic employment of Pb(SCN)2 and TEACl suppresses light-induced phase segregation, passivates WBG perovskite defects, and reduces non-radiative recombination, hence alleviating VOC loss. As a result, optimized WBG perovskite solar cells (PSCs) are obtained with an impressive VOC of 1.26 V and power conversion efficiency (PCE) over 17.0%. Furthermore, the interconnection layer is optimized to minimize the VOC loss and construct two-terminal perovskite/organic tandem solar cells with a narrow bandgap organic blend bulk heterojunction of PM6:Y6 and achieve a champion PCE of 22.29% with a high VOC of 2.072 V. In addition, these tandem solar cells maintain 81% of their initial efficiency after 1000 h continuous tracking at the maximum power point (MPP) under 100 mW cm-2 white light illumination.

7.
Langmuir ; 38(21): 6623-6637, 2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35587380

RESUMEN

Cationic biocides have been widely used as active ingredients in personal care and healthcare products for infection control and wound treatment for a long time, but there are concerns over their cytotoxicity and antimicrobial resistance. Designed lipopeptides are potential candidates for alleviating these issues because of their mildness to mammalian host cells and their high efficacy against pathogenic microbial membranes. In this study, antimicrobial and cytotoxic properties of a de novo designed lipopeptide, CH3(CH2)12CO-Lys-Lys-Gly-Gly-Ile-Ile-NH2 (C14KKGGII), were assessed against that of two traditional cationic biocides CnTAB (n = 12 and 14), with different critical aggregation concentrations (CACs). C14KKGGII was shown to be more potent against both bacteria and fungi but milder to fibroblast host cells than the two biocides. Biophysical measurements mimicking the main features of microbial and host cell membranes were obtained for both lipid monolayer models using neutron reflection and small unilamellar vesicles (SUVs) using fluorescein leakage and zeta potential changes. The results revealed selective binding to anionic lipid membranes from the lipopeptide and in-membrane nanostructuring that is distinctly different from the co-assembly of the conventional CnTAB. Furthermore, CnTAB binding to the model membranes showed low selectivity, and its high cytotoxicity could be attributed to both membrane lysis and chemical toxicity. This work demonstrates the advantages of the lipopeptides and their potential for further development toward clinical application.


Asunto(s)
Antiinfecciosos , Desinfectantes , Animales , Antibacterianos/química , Antiinfecciosos/toxicidad , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/toxicidad , Desinfectantes/farmacología , Lipopéptidos/farmacología , Mamíferos , Pruebas de Sensibilidad Microbiana
8.
Mol Cell Biochem ; 477(9): 2257-2268, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35478388

RESUMEN

Diabetes is a metabolic disorder associated with various complications, including periodontitis. The risk of periodontitis is increased in patients with diabetes, while vitamin D deficiency is associated with both diabetes and periodontitis. Thus, there is a need to identify the molecular effects of vitamin D on the regulation of inflammation and glucose in diabetes-associated periodontitis. The Web of Science, Scopus, and PubMed databases were searched for studies of the molecular effects of vitamin D. Molecular effects were reportedly mediated by salivary secretions, interactions of advanced glycation end products (AGEs) with receptors of AGEs (RAGEs), cytokines, and oxidative stress pathways linking diabetes with periodontitis. Vitamin D supplementation attenuates inflammation in diabetes-associated periodontitis by reducing the levels of inflammatory cytokines and numbers of immune cells; it also has antibacterial effects. Vitamin D reduces cytokine levels through regulation of the extracellular signal-related kinase 1/2 and Toll-like receptor 1/2 pathways, along with the suppression of interleukin expression. Glucose homeostasis is altered in diabetes either because of reduced insulin production or decreased insulin sensitivity. These vitamin D-related alterations of glucoregulatory factors may contribute to hyperglycaemia; hyperglycaemia may also lead to alterations of glucoregulatory factors. This review discusses the pathways involved in glucose regulation and effects of vitamin D supplementation on glucose regulation. Further studies are needed to characterise the effects of vitamin D on diabetes-associated periodontitis.


Asunto(s)
Diabetes Mellitus Tipo 2 , Diabetes Mellitus , Hiperglucemia , Periodontitis , Glucemia , Citocinas , Diabetes Mellitus/tratamiento farmacológico , Glucosa/metabolismo , Humanos , Hiperglucemia/complicaciones , Inflamación/metabolismo , Periodontitis/complicaciones , Periodontitis/tratamiento farmacológico , Periodontitis/metabolismo , Vitamina D/farmacología , Vitaminas/farmacología , Vitaminas/uso terapéutico
9.
Curr Opin Colloid Interface Sci ; 52: 101417, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33642918

RESUMEN

Since the outbreak of the COVID-19 pandemic, most countries have recommended their citizens to adopt social distance, hand hygiene, and face mask wearing. However, wearing face masks has not been well adopted by many citizens. While the reasons are complex, there is a general perception that the evidence to support face mask wearing is lacking, especially for the general public in a community setting. Face mask wearing can block or filter airborne virus-carrying particles through the working of colloid and interface science. This paper assesses current knowledge behind the design and functioning of face masks by reviewing the selection of materials, mask specifications, relevant laboratory tests, and respiratory virus transmission trials, with an overview of future development of reusable masks for the general public. This review highlights the effectiveness of face mask wearing in the prevention of COVID-19 infection.

10.
Small ; 16(45): e2003945, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33015967

RESUMEN

Peptide self-assembly is fast evolving into a powerful method for the development of bio-inspired nanomaterials with great potential for many applications, but it remains challenging to control the self-assembling processes and nanostrucutres because of the intricate interplay of various non-covalent interactions. A group of 28-residue α-helical peptides is designed including NN, NK, and HH that display distinct hierarchical events. The key of the design lies in the incorporation of two asparagine (Asn) or histidine (His) residues at the a positions of the second and fourth heptads, which allow one sequence to pack into homodimers with sticky ends through specific interhelical Asn-Asn or metal complexation interactions, followed by their longitudinal association into ordered nanofibers. This is in contrast to classical self-assembling helical peptide systems consisting of two complementary peptides. The collaborative roles played by the four main non-covalent interactions, including hydrogen-bonding, hydrophobic interactions, electrostatic interactions, and metal ion coordination, are well demonstrated during the hierarchical self-assembling processes of these peptides. Different nanostructures, for example, long and short nanofibers, thin and thick fibers, uniform metal ion-entrapped nanofibers, and polydisperse globular stacks, can be prepared by harnessing these interactions at different levels of hierarchy.


Asunto(s)
Nanofibras , Nanoestructuras , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Péptidos
11.
Molecules ; 25(9)2020 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-32353995

RESUMEN

Monoclonal antibodies (mAbs) are an important class of biotherapeutics; as of 2020, dozens are commercialized medicines, over a hundred are in clinical trials, and many more are in preclinical developmental stages. Therapeutic mAbs are sequence modified from the wild type IgG isoforms to varying extents and can have different intrinsic structural stability. For chronic treatments in particular, high concentration (≥ 100 mg/mL) aqueous formulations are often preferred for at-home administration with a syringe-based device. MAbs, like any globular protein, are amphiphilic and readily adsorb to interfaces, potentially causing structural deformation and even unfolding. Desorption of structurally perturbed mAbs is often hypothesized to promote aggregation, potentially leading to the formation of subvisible particles and visible precipitates. Since mAbs are exposed to numerous interfaces during biomanufacturing, storage and administration, many studies have examined mAb adsorption to different interfaces under various mitigation strategies. This review examines recent published literature focusing on adsorption of bioengineered mAbs under well-defined solution and surface conditions. The focus of this review is on understanding adsorption features driven by distinct antibody domains and on recent advances in establishing model interfaces suitable for high resolution surface measurements. Our summary highlights the need to further understand the relationship between mAb interfacial adsorption and desorption, solution aggregation, and product instability during fill-finish, transport, storage and administration.


Asunto(s)
Anticuerpos Monoclonales/química , Ingeniería de Proteínas , Adsorción , Aire , Técnicas Biosensibles , Humanos , Inmunoglobulina G/química , Simulación de Dinámica Molecular , Método de Montecarlo , Neutrones , Dispersión de Radiación , Dióxido de Silicio/química , Acero Inoxidable , Propiedades de Superficie , Tensoactivos , Agua
12.
Langmuir ; 35(42): 13543-13552, 2019 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-31510747

RESUMEN

The physical stability of a monoclonal antibody (mAb) solution for injection in a prefilled syringe may in part depend on its behavior at the silicone oil/water interface. Here, the adsorption of a mAb (termed COE-3) and its fragment antigen-binding (Fab) and crystallizable (Fc) at the oil/water interface was measured using neutron reflection. A 1.4 ± 0.1 µm hexadecane oil film was formed on a sapphire block by a spin-freeze-thaw process, retaining its integrity upon contact with the protein solutions. Measurements revealed that adsorbed COE-3 and its Fab and Fc fragments retained their globular structure, forming layers that did not penetrate substantially into the oil phase. COE-3 and Fc were found to adsorb flat-on to the interface, with denser 45 and 42 Å inner layers, respectively, in contact with the oil and a more diffuse 17-21 Å outer layer caused by fragments adsorbing in a tilted manner. In contrast, Fab fragments formed a uniform 60 Å monolayer. Monolayers were formed under all conditions studied (10-200 ppm, using three isotopic contrasts), although changes in packing density across the COE-3 and Fc layers were observed. COE-3 had a higher affinity to the interface than either of its constituent fragments, while Fab had a lower interfacial affinity consistent with its higher net surface charge. This study extends the application of high-resolution neutron reflection measurements to the study of protein adsorption at the oil/water interface using an experimental setup mimicking the protein drug product in a siliconized prefilled syringe.


Asunto(s)
Alcanos/química , Anticuerpos Monoclonales/química , Fragmentos Fab de Inmunoglobulinas/química , Fragmentos Fc de Inmunoglobulinas/química , Aceites/química , Agua/química , Adsorción , Humanos
13.
Biomacromolecules ; 20(9): 3601-3610, 2019 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-31365246

RESUMEN

Mixed thermoreversible gels were successfully fabricated by the addition of a thermosensitive polymer, poly(N-isopropylacrylamide) (PNIPAM), to fibrillar nanostructures self-assembled from a short peptide I3K. When the temperature was increased above the lower critical solution temperature of the PNIPAM, the molecules collapsed to form condensed globular particles, which acted as cross-links to connect different peptide nanofibrils and freeze their movements, resulting in the formation of a hydrogel. Since these processes were physically driven, such hydrogels could be reversibly switched between the sol and gel states as a function of temperature. As a model peptide, I3K was formulated with PNIPAM to produce a thermoreversible sol-gel system with a transition temperature of ∼33 °C, which is just below the body temperature. The antibacterial peptide of G(IIKK)3I-NH2 could be conveniently encapsulated in the hydrogel by the addition of the solution at lower temperatures in the sol phase and then increasing the temperature to be above 33 °C for gelation. The hydrogel gave a sustained and controlled linear release of G(IIKK)3I-NH2 over time. Using the peptide nanofibrils as three-dimensional scaffolds, such thermoresponsive hydrogels mimic the extracellular matrix and could potentially be used as injectable hydrogels for minimally invasive drug delivery or tissue engineering.


Asunto(s)
Resinas Acrílicas/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Sistemas de Liberación de Medicamentos , Hidrogeles/farmacología , Resinas Acrílicas/química , Péptidos Catiónicos Antimicrobianos/química , Humanos , Hidrogeles/química , Temperatura , Sensación Térmica , Ingeniería de Tejidos
14.
Small ; 14(12): e1703216, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29430820

RESUMEN

Controlling the diameters of nanotubes represents a major challenge in nanostructures self-assembled from templating molecules. Here, two series of bolaform hexapeptides are designed, with Set I consisting of Ac-KI4 K-NH2 , Ac-KI3 NleK-NH2 , Ac-KI3 LK-NH2 and Ac-KI3 TleK-NH2 , and Set II consisting of Ac-KI3 VK-NH2 , Ac-KI2 V2 K-NH2 , Ac-KIV3 K-NH2 and Ac-KV4 K-NH2 . In Set I, substitution for Ile in the C-terminal alters its side-chain branching, but the hydrophobicity is retained. In Set II, the substitution of Val for Ile leads to the decrease of hydrophobicity, but the side-chain ß-branching is retained. The peptide bolaphiles tend to form long nanotubes, with the tube shell being composed of a peptide monolayer. Variation in core side-chain branching and hydrophobicity causes a steady shift of peptide nanotube diameters from more than one hundred to several nanometers, thereby achieving a reliable control over the underlying molecular self-assembling processes. Given the structural and functional roles of peptide tubes with varying dimensions in nature and in technological applications, this study exemplifies the predictive templating of nanostructures from short peptide self-assembly.


Asunto(s)
Aminoácidos/química , Nanoestructuras/química , Nanotubos/química , Péptidos/química , Interacciones Hidrofóbicas e Hidrofílicas , Estructura Secundaria de Proteína
15.
Langmuir ; 34(11): 3395-3404, 2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29444568

RESUMEN

The interaction of nonionic surfactant hexaethylene glycol monododecyl ether (C12E6) with a reconstituted cuticular wheat wax film has been investigated by spectroscopic ellipsometry and neutron reflection (NR) to help understand the role of the leaf wax barrier during pesticide uptake, focusing on the mimicry of the actions adjuvants impose on the physical integrity and transport of the cuticular wax films against surfactant concentration. As the C12E6 concentration was increased up to the critical micelle concentration (CMC = 0.067 mM), an increasing amount of surfactant mass was deposited onto the wax film. Alongside surface adsorption, C12E6 was also observed to penetrate the wax film, which is evident from the NR measurements using fully protonated and chain-deuterated surfactants. Furthermore, surfactant action upon the model wax film was found to be physically reversible below the CMC, as water rinsing could readily remove the adsorbed surfactant, leaving the wax film in its original state. Above the CMC, the detergency action of the surfactant became dominant, and a significant proportion of the wax film was removed, causing structural damage. The results thus reveal that both water and C12E6 could easily penetrate the wax film throughout the concentration range measured, indicating a clear pathway for the transport of active ingredients while the removal of the wax components above the CMC must have enhanced the transport process. As the partial removal of the wax film could also expose the underlying cutaneous substrate to the environment and undermine the plant's health, this study has a broad implication to the roles of surfactants in crop care.

16.
J Colloid Interface Sci ; 672: 209-223, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38838629

RESUMEN

Multidrug resistance (MDR) is a rising threat to global health because the number of essential antibiotics used for treating MDR infections is increasingly compromised. In this work we report a group of new amphiphilic peptides (AMPs) derived from the well-studied G3 (G(IIKK)3I-NH2) to fight infections from Gram-positive bacteria including susceptible Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA), focusing on membrane interactions. Time-dependent killing experiments revealed that substitutions of II by WW (GWK), II by FF (GFK) and KK by RR (GIR) resulted in improved bactericidal efficiencies compared to G3 (GIK) on both S. aureus and MRSA, with the order of GWK > GIR > GFK > GIK. Electronic microscopy imaging revealed structural disruptions of AMP binding to bacterial cell walls. Fluorescence assays including AMP binding to anionic lipoteichoic acids (LTA) in cell-free and cell systems indicated concentration and time-dependent membrane destabilization associated with bacterial killing. Furthermore, AMP's binding to anionic plasma membrane via similar fluorescence assays revealed a different extent of membrane depolarization and leakage. These observations were supported by the penetration of AMPs into the LTA barrier and the subsequent structural compromise to the cytoplasmic membrane as revealed from SANS (small angle neutron scattering). Both experiments and molecular dynamics (MD) simulations revealed that GWK and GIR could make the membrane more rigid but less effective in diffusive efficiency than GIK and GFK through forming intramembrane peptide nanoaggregates associated with hydrophobic mismatch and formation of fluidic and rigid patches. The reported peptide-aggregate-induced phase-separation emerged as a crucial factor in accelerated membrane disintegration and fast bacterial killing. This work has demonstrated the importance of membrane interactions to the development of more effective AMPs and the relevance of the approaches as reported in assisting this area of research.

17.
J Colloid Interface Sci ; 659: 397-412, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38183806

RESUMEN

BACKGROUND: Clinical treatments ofgastric infections using antibiotics suffer from the undesired killing of commensal bacteria and emergence of antibiotic resistance. It is desirable to develop pH-responsive antimicrobial peptides (AMPs) that kill pathogenic bacteria such as H. pyloriand resistant E. coli under acidic environment with minimal impact to commensal bacteria whilst not causing antibiotic resistance. EXPERIMENTS: Using a combined approach of cell assays, molecular dynamics (MD) simulations and membrane models facilitating biophysical and biochemical measurements including small angle neutron scattering (SANS), we have characterized the pH-responsive physiochemical properties and antimicrobial performance of two amphiphilic AMPs, GIIKDIIKDIIKDI-NH2 and GIIKKIIDDIIKKI-NH2 (denoted as 3D and 2D, respectively), that were designed by selective substitutions of cationic residues of Lys (K) in the extensively studied AMP G(IIKK)3I-NH2 with anionic residue Asp (D). FINDINGS: Whilst 2D kept non-ordered coils across the entire pH range studied, 3D displayed a range of secondary structures when pH was shifted from basic to acidic, with distinct self-assembly into nanofibers in aqueous environment. Further experimental and modeling studies revealed that the AMPs interacted differently with the inner and outer membranes of Gram-negative bacteria in a pH-responsive manner and that the structural features characterized by membrane leakage and intramembrane nanoaggregates revealed from fluorescence spectroscopy and SANS were well linked to antimicrobial actions. Different antimicrobial efficacies of 2D and 3D were underlined by the interplay between their ability to bind to the outer membrane lipid LPS (lipopolysaccharide), outer membrane permeability change and inner membrane depolarization and leakage. Furthermore, AMP's binding with the inner membrane under acidic condition caused both the dissipation of membrane potential (Δψ) and the continuous dissipation of transmembrane ΔpH, with Δψ and ΔpH being the key components of the proton motive force. Combinations of antibiotic (Minocycline) with the pH-responsive AMP generated the synergistic effects against Gram-negative bacteria only under acidic condition. These features are crucial to target applications to gastric infections, anti-acne and wound healing.


Asunto(s)
Antibacterianos , Antiinfecciosos , Antibacterianos/química , Péptidos Catiónicos Antimicrobianos/química , Escherichia coli , Bacterias Gramnegativas , Antiinfecciosos/farmacología , Lipopolisacáridos/química , Bacterias/metabolismo , Concentración de Iones de Hidrógeno , Pruebas de Sensibilidad Microbiana
18.
J Colloid Interface Sci ; 663: 287-294, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38402823

RESUMEN

The co-assembly of different peptide chains usually leads to the formation of intricate architectures and sophisticated functions in biological systems. Although the co-assembly of stereoisomeric peptides represents a facile and flexible strategy for the synthesis of peptide-based nanomaterials with novel structures and potentially interesting properties, there is a lack of a general knowledge on how different isomers pack during assembly. Through the combined use of simulations and experimental observations, we report that heterochiral pairing is preferred to homochiral pairing at the molecular scale but self-sorting dictates beyond the molecular level for the mixtures of the short stereoisomeric ß-sheet peptides I3K (Ile-Ile-Ile-Lys). Furthermore, we demonstrate that flat ß-sheets and fibril morphology are always preferred to twisted ones during heterochiral pairing and subsequent assembly. However, the heterochiral pairing into flat morphology is not always at an equimolar ratio. Instead, a non-equimolar ratio (1:2) is observed for the mixing of homochiral LI3LK and heterochiral LI3DK, whose strand twisting degrees differ greatly. Such a study provides a paradigm for understanding the co-assembly of stereoisomeric peptides at the molecular scale and harnessing their blending for targeted nanostructures.


Asunto(s)
Nanoestructuras , Péptidos , Estereoisomerismo , Péptidos/química , Nanoestructuras/química , Conformación Proteica en Lámina beta
19.
Adv Mater ; 36(1): e2307987, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37956304

RESUMEN

Wide-bandgap (WBG) perovskite solar cells have attracted considerable interest for their potential applications in tandem solar cells. However, the predominant obstacles impeding their widespread adoption are substantial open-circuit voltage (VOC ) deficit and severe photo-induced halide segregation. To tackle these challenges, a crystal orientation regulation strategy by introducing dodecyl-benzene-sulfonic-acid as an additive in perovskite precursors is proposed. This method significantly promotes the desired crystal orientation, passivates defects, and mitigates photo-induced halide phase segregation in perovskite films, leading to substantially reduced nonradiative recombination, minimized VOC deficits, and enhanced operational stability of the devices. The resulting 1.66 eV bandgap methylamine-free perovskite solar cells achieve a remarkable power conversion efficiency (PCE) of 22.40% (certified at 21.97%), with the smallest VOC deficit recorded at 0.39 V. Furthermore, the fabricated semitransparent WBG devices exhibit a competitive PCE of 20.13%. Consequently, four-terminal tandem cells comprising WBG perovskite top cells and 1.25 eV bandgap perovskite bottom cells showcase an impressive PCE of 28.06% (stabilized 27.92%), demonstrating great potential for efficient multijunction tandem solar cell applications.

20.
Sci Adv ; 10(10): eadn2265, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38446894

RESUMEN

Metal anodes are emerging as culminating solutions for the development of energy-dense batteries in either aprotic, aqueous, or solid battery configurations. However, unlike traditional intercalation electrodes, the low utilization of "hostless" metal anodes due to the intrinsically disordered plating/stripping impedes their practical applications. Herein, we report ordered planar plating/stripping in a bulk zinc (Zn) anode to achieve an extremely high depth of discharge exceeding 90% with negligible thickness fluctuation and long-term stable cycling. The Zn can be plated/stripped with (0001)Zn preferential orientation throughout the consecutive charge/discharge process, assisted by a self-assembled supramolecular bilayer at the Zn anode-electrolyte interface. Through real-time tracking of the Zn atoms migration, we reveal that the ordered planar plating/stripping is driven by the construction of in-plane Zn─N bindings and the gradient energy landscape at the reaction fronts. The breakthrough results provide alternative insights into the ordered plating/stripping of metal anodes toward rechargeable energy-dense batteries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA