Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Opt Express ; 29(10): 14705-14719, 2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-33985187

RESUMEN

The generation, propagation, and applications of different types of integer vector beams have been extensively investigated. However, little attention focuses on the photophysical and photomechanical properties of the fractional vector beam (FVB). Herein, we theoretically and experimentally investigate the spin angular momentum (SAM) separation and propagation characteristics of weakly focused FVBs. It is demonstrated that such a beam carrying no SAM leads to both the transverse separation of SAM and the special intensity patterns in the focal region. Furthermore, we study the intensity, SAM, and orbital angular momentum (OAM) distributions of the tightly focused FVBs. It is shown that both three-dimensional SAM and OAM are spatially separated in the focal region of tightly focused FVBs. We investigate the optical forces, spin torques, and orbital torques on a dielectric Rayleigh particle produced by the focused FVBs. The results reveal that asymmetrical spinning and orbiting motions of optically trapped particles can be realized by manipulating FVBs.

2.
Opt Express ; 27(10): 13845-13857, 2019 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-31163843

RESUMEN

The interaction of intense laser with matter gives rise to a variety of novel nonlinear optical effects, reflects the nonlinear optical property of a material, and modulates the light propagation behavior. Herein, we investigate anisotropic Kerr nonlinearities induced by both scalar and vectorial optical fields. Firstly, we present the anisotropic third-order nonlinear refraction indexes related to left-hand and right-hand components, which depend on the ellipticity, the dichroism coefficient, the anisotropy coefficient, as well as the crystal orientation angle. Secondly, we develop the elliptically polarized light Z-scan technique for characterizing third-order nonlinear susceptibility tensor in anisotropic nonlinear Kerr media, which is demonstrated experimentally. Lastly, with the known nonlinear optical parameters, we numerically study both the vectorial self-diffraction behaviors and spin angular momentum (SAM) characteristics of hybridly polarized beams induced by an anisotropic Kerr nonlinearity. It is shown that the anisotropic Kerr nonlinearity offers a new approach to manipulate the polarization-structured light field, which has potential applications in SAM manipulation, three-dimensional crystal orientation, and polarization-sensitive detection and sensing.

3.
Nanoscale ; 15(13): 6225-6233, 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-36892207

RESUMEN

As an allotrope of phosphorus, layered violet phosphorus (VP) has a wide range of applications in electronics, photonics, and optoelectronics. However, its nonlinear optical properties remain to be explored. In this work, we prepare and characterize VP nanosheets (VP Ns), investigate their spatial self-phase modulation (SSPM) effects, and develop them in all-optical switching applications. The ring forming time of SSPM and the third-order nonlinear susceptibility of monolayer VP Ns were found to be about 0.4 s and 10-9 esu, respectively. The mechanism of SSPM formed by coherent light-VP Ns interaction is analyzed. Using the superior coherence electronic nonlinearity of VP Ns, we realize degenerate and non-degenerate all-optical switches based on the SSPM effect. It is demonstrated that the performance of all-optical switching can be controlled by adjusting the intensity of the control beam and/or the wavelength of the signal beam. The results will help us to better design and realize non-degenerate nonlinear photonic devices based on two-dimensional nanomaterials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA