Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(2): 600-624, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38048326

RESUMEN

We examined YAP1/TAZ-TEAD signaling pathway activity at neuromuscular junctions (NMJs) of skeletal muscle fibers in adult mice. Our investigations revealed that muscle-specific knockouts of Yap1 or Taz, or both, demonstrate that these transcriptional coactivators regulate synaptic gene expression, the number and morphology of NMJs, and synaptic nuclei. Yap1 or Taz single knockout mice display reduced grip strength, fragmentation of NMJs, and accumulation of synaptic nuclei. Yap1/Taz muscle-specific double knockout mice do not survive beyond birth and possess almost no NMJs, the few detectable show severely impaired morphology and are organized in widened endplate bands; and with motor nerve endings being mostly absent. Myogenic gene expression is significantly impaired in the denervated muscles of knockout mice. We found that Tead1 and Tead4 transcription rates were increased upon incubation of control primary myotubes with AGRN-conditioned medium. Reduced AGRN-dependent acetylcholine receptor clustering and synaptic gene transcription were observed in differentiated primary Tead1 and Tead4 knockout myotubes. In silico analysis of previously reported genomic occupancy sites of TEAD1/4 revealed evolutionary conserved regions of potential TEAD binding motifs in key synaptic genes, the relevance of which was functionally confirmed by reporter assays. Collectively, our data suggest a role for YAP1/TAZ-TEAD1/TEAD4 signaling, particularly through TAZ-TEAD4, in regulating synaptic gene expression and acetylcholine receptor clustering at NMJs.


Asunto(s)
Redes Reguladoras de Genes , Factores de Transcripción , Ratones , Animales , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Unión Neuromuscular/metabolismo , Ratones Noqueados , Expresión Génica , Receptores Colinérgicos/genética , Receptores Colinérgicos/metabolismo , Músculo Esquelético/metabolismo
2.
Kidney Int ; 105(4): 775-790, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38286179

RESUMEN

Chronic kidney disease (CKD) is characterized by kidney inflammation and fibrosis. However, the precise mechanisms leading to kidney inflammation and fibrosis are poorly understood. Since histone deacetylase is involved in inflammation and fibrosis in other tissues, we examined the role of histone deacetylase 3 (HDAC3) in the regulation of inflammation and kidney fibrosis. HDAC3 is induced in the kidneys of animal models of CKD but mice with conditional HDAC3 deletion exhibit significantly reduced fibrosis in the kidneys compared with control mice. The expression of proinflammatory and profibrotic genes was significantly increased in the fibrotic kidneys of control mice, which was impaired in mice with HDAC3 deletion. Genetic deletion or pharmacological inhibition of HDAC3 reduced the expression of proinflammatory genes in cultured monocytes/macrophages. Mechanistically, HDAC3 deacetylates Lys122 of NF-κB p65 subunit turning on transcription. RGFP966, a selective HDAC3 inhibitor, reduced fibrosis in cells and in animal models by blocking NF-κB p65 binding to κB-containing DNA sequences. Thus, our study identified HDAC3 as a critical regulator of inflammation and fibrosis of the kidney through deacetylation of NF-κB unlocking its transcriptional activity. Hence, targeting HDAC3 could serve as a novel therapeutic strategy for CKD.


Asunto(s)
Histona Desacetilasas , Nefritis , Insuficiencia Renal Crónica , Animales , Ratones , Fibrosis , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Inflamación/genética , Inflamación/patología , Riñón/patología , Nefritis/genética , Nefritis/patología , FN-kappa B/metabolismo , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/patología
3.
Drug Metab Dispos ; 52(7): 673-680, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38658163

RESUMEN

Imaging mass spectrometry (IMS) is a powerful tool for mapping the spatial distribution of unlabeled drugs and metabolites that may find application in assessing drug delivery, explaining drug efficacy, and identifying potential toxicity. This study focuses on determining the spatial distribution of the antidepressant duloxetine, which is widely prescribed despite common adverse effects (liver injury, constant headaches) whose mechanisms are not fully understood. We used high-resolution IMS with matrix-assisted laser desorption/ionization to examine the distribution of duloxetine and its major metabolites in four mouse organs where it may contribute to efficacy or toxicity: brain, liver, kidney, and spleen. In none of these tissues is duloxetine or its metabolites homogeneously distributed, which has implications for both efficacy and toxicity. We found duloxetine to be similarly distributed in spleen red pulp and white pulp but differentially distributed in different anatomic regions of the liver, kidney, and brain, with dose-dependent patterns. Comparison with hematoxylin and eosin staining of tissue sections reveals that the ion images of endogenous lipids help delineate anatomic regions in the brain and kidney, while heme ion images assist in differentiating regions within the spleen. These endogenous metabolites may serve as a valuable resource for examining the spatial distribution of other drugs in tissues when staining images are not available. These findings may facilitate future mechanistic studies of the therapeutic and adverse effects of duloxetine. In the current work, we did not perform absolute quantification of duloxetine, which will be reported in due course. SIGNIFICANCE STATEMENT: The study utilized imaging mass spectrometry to examine the spatial distribution of duloxetine and its primary metabolites in mouse brain, liver, kidney, and spleen. These results may pave the way for future investigations into the mechanisms behind duloxetine's therapeutic and adverse effects. Furthermore, the mass spectrometry images of specific endogenous metabolites such as heme could be valuable in analyzing the spatial distribution of other drugs within tissues in scenarios where histological staining images are unavailable.


Asunto(s)
Antidepresivos , Encéfalo , Clorhidrato de Duloxetina , Riñón , Hígado , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Bazo , Animales , Clorhidrato de Duloxetina/metabolismo , Ratones , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Bazo/metabolismo , Bazo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/diagnóstico por imagen , Riñón/metabolismo , Riñón/efectos de los fármacos , Hígado/metabolismo , Hígado/efectos de los fármacos , Antidepresivos/metabolismo , Distribución Tisular , Masculino , Ratones Endogámicos C57BL
4.
FASEB J ; 37(10): e23175, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37742293

RESUMEN

Many studies have highlighted the importance of moderate exercise. While it can attenuate diabetic kidney disease, its mechanism has remained unclear. The level of myokine irisin in plasma increases during exercise. We found that irisin was decreased in diabetic patients and was closely related to renal function, proteinuria, and podocyte autophagy injury. Muscle-specific overexpression of PGC-1α (mPGC-1α) in a mouse model is known to increase plasma irisin levels. The mPGC-1α mice were crossed with db/m mice to obtain db/db mPGC-1α+ mice in the present study. Compared to db/db mice without mPGC-1α, plasma irisin was increased, and albuminuria and glomerular pathological damage were both alleviated in db/db mPGC-1α+ mice. Impaired autophagy in podocytes was restored as well. Irisin inhibited the activation of the PI3K/AKT/mTOR signaling pathway in cultured human podocytes and improved damaged autophagy induced by high glucose levels. Then, db/db mice were treated with recombinant irisin, which had similar beneficial effects on the kidney as those in db/db mPGC-1α+ mice, with alleviated glomerular injury and albuminuria. Moreover, the autophagy in podocytes was also significantly restored. These results suggest that irisin secreted by skeletal muscles protects the kidney from diabetes mellitus damage. It also restores autophagy in podocytes by inhibiting the abnormal activation of the PI3K/AKT/mTOR signaling pathway. Thus, irisin may become a new drug for the prevention and treatment of diabetic nephropathy.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Podocitos , Humanos , Ratones , Animales , Podocitos/metabolismo , Nefropatías Diabéticas/metabolismo , Fibronectinas/metabolismo , Albuminuria/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Autofagia , Serina-Treonina Quinasas TOR/metabolismo , Diabetes Mellitus/metabolismo
5.
Circ Res ; 131(3): 207-221, 2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35722884

RESUMEN

BACKGROUND: Chronic kidney disease (CKD) is characterized by increased myocardial mass despite near-normal blood pressure, suggesting the presence of a separate trigger. A potential driver is SIRPα (signal regulatory protein alpha)-a mediator impairing insulin signaling. The objective of this study is to assess the role of circulating SIRPα in CKD-induced adverse cardiac remodeling. METHODS: SIRPα expression was evaluated in mouse models and patients with CKD. Specifically, mutant, muscle-specific, or cardiac muscle-specific SIRPα KO (knockout) mice were examined after subtotal nephrectomy. Cardiac function was assessed by echocardiography. Metabolic responses were confirmed in cultured muscle cells or cardiomyocytes. RESULTS: We demonstrate that SIRPα regulates myocardial insulin/IGF1R (insulin growth factor-1 receptor) signaling in CKD. First, in the serum of both mice and patients, SIRPα was robustly secreted in response to CKD. Second, cardiac muscle upregulation of SIRPα was associated with impaired insulin/IGF1R signaling, myocardial dysfunction, and fibrosis. However, both global and cardiac muscle-specific SIRPα KO mice displayed improved cardiac function when compared with control mice with CKD. Third, both muscle-specific or cardiac muscle-specific SIRPα KO mice did not significantly activate fetal genes and maintained insulin/IGF1R signaling with suppressed fibrosis despite the presence of CKD. Importantly, SIRPα directly interacted with IGF1R. Next, rSIRPα (recombinant SIRPα) protein was introduced into muscle-specific SIRPα KO mice reestablishing the insulin/IGF1R signaling activity. Additionally, overexpression of SIRPα in myoblasts and cardiomyocytes impaired pAKT (phosphorylation of AKT) and insulin/IGF1R signaling. Furthermore, myotubes and cardiomyocytes, but not adipocytes treated with high glucose or cardiomyocytes treated with uremic toxins, stimulated secretion of SIRPα in culture media, suggesting these cells are the origin of circulating SIRPα in CKD. Both intracellular and extracellular SIRPα exert biologically synergistic effects impairing intracellular myocardial insulin/IGF1R signaling. CONCLUSIONS: Myokine SIRPα expression impairs insulin/IGF1R functions in cardiac muscle, affecting cardiometabolic signaling pathways. Circulating SIRPα constitutes an important readout of insulin resistance in CKD-induced cardiomyopathy.


Asunto(s)
Cardiomiopatías , Receptor IGF Tipo 1/metabolismo , Receptores Inmunológicos/metabolismo , Insuficiencia Renal Crónica , Animales , Cardiomiopatías/etiología , Cardiomiopatías/metabolismo , Fibrosis , Insulina/metabolismo , Ratones , Ratones Noqueados , Miocitos Cardíacos/metabolismo , Insuficiencia Renal Crónica/complicaciones
6.
J Proteome Res ; 22(3): 908-918, 2023 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-36648763

RESUMEN

Peritoneal fibrosis progression is regarded as a significant cause of the loss of peritoneal function, markedly limiting the application of peritoneal dialysis (PD). However, the pathogenesis of peritoneal fibrosis remains to be elucidated. Tissue-derived extracellular vesicles (EVs) change their molecular cargos to adapt the environment alteration, mediating intercellular communications and play a significant role in organ fibrosis. Hence, we performed, for the first time, four-dimensional label-free quantitative liquid chromatography-tandem mass spectrometry proteomic analyses on EVs from normal peritoneal tissues and PD-induced fibrotic peritoneum in mice. We demonstrated the alterations of EV concentration and protein composition between normal control and PD groups. A total of 2339 proteins containing 967 differentially expressed proteins were identified. Notably, upregulated proteins in PD EVs were enriched in processes including response to wounding and leukocyte migration, which participated in the development of fibrosis. In addition, EV proteins of the PD group exhibited unique metabolic signature compared with those of the control group. The glycolysis-related proteins increased in PD EVs, while oxidative phosphorylation and fatty acid metabolism-related proteins decreased. We also evaluated the effect of cell-type specificity on EV proteins, suggesting that mesothelial cells mainly cause the alterations in the molecular composition of EVs. Our study provided a useful resource for further validation of the key regulator or therapeutic target of peritoneal fibrosis.


Asunto(s)
Vesículas Extracelulares , Diálisis Peritoneal , Fibrosis Peritoneal , Ratones , Animales , Peritoneo/metabolismo , Peritoneo/patología , Fibrosis Peritoneal/metabolismo , Fibrosis Peritoneal/patología , Fibrosis Peritoneal/terapia , Proteómica/métodos , Diálisis Peritoneal/efectos adversos , Diálisis Peritoneal/métodos , Vesículas Extracelulares/patología
7.
FASEB J ; 36(11): e22592, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36251411

RESUMEN

Cell heterogeneity has impeded the accurate interpretation of the bulk transcriptome data from patients with diabetic nephropathy (DN). We performed an analysis by integrating bulk and single-cell transcriptome datasets to uncover novel mechanisms leading to DN, especially in the podocytes. Microdissected glomeruli and tubules transcriptome datasets were selected from Gene Expression Omnibus (GEO). Then the consistency between datasets was evaluated. The analysis of the bulk dataset and single-nucleus RNA dataset was integrated to reveal the cell type-specific responses to DN. The candidate genes were validated in kidney tissues from DN patients and diabetic mice. We compared 4 glomerular and 4 tubular datasets and found considerable discrepancies among datasets regarding the deferentially expressed genes (DEGs), involved signaling pathways, and the hallmark enrichment profiles. Deconvolution of the bulk data revealed that the variations in cell-type proportion contributed greatly to this discrepancy. The integrative analysis uncovered that the dysregulation of spermatogenesis-related genes, including TEKT2 and PIAS2, was involved in the development of DN. Importantly, the mRNA level of TEKT2 was negatively correlated with the mRNA levels of NPHS1 (r = -.66, p < .0001) and NPHS2 (r = -.85, p < .0001) in human diabetic glomeruli. Immunostaining confirmed that the expression of TEKT2 and PIAS2 were up-regulated in podocytes of DN patients and diabetic mice. Knocking down TEKT2 resisted high glucose-induced cytoskeletal remodeling and down-regulation of NPHS1 protein in the cultured podocyte. In conclusion, the integrative strategy can help us efficiently use the publicly available transcriptomics resources. Using this approach and combining it with classical research methods, we identified TEKT2 and PIAS2, two spermatogenesis-related genes involved in the pathogenesis of DN. Furthermore, TEKT2 is involved in this pathogenesis by regulating the podocyte cytoskeleton.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Proteínas de Microtúbulos , Podocitos , Proteínas Inhibidoras de STAT Activados , Animales , Humanos , Masculino , Ratones , Diabetes Mellitus Experimental/metabolismo , Nefropatías Diabéticas/metabolismo , Perfilación de la Expresión Génica , Glucosa/metabolismo , Podocitos/metabolismo , Proteínas Inhibidoras de STAT Activados/metabolismo , ARN Mensajero/metabolismo , Transcriptoma , Proteínas de Microtúbulos/metabolismo
8.
Water Sci Technol ; 87(9): 2061-2078, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37186615

RESUMEN

The novel Cr(VI) anion-imprinted polymer (Cr(VI)-IIP) was prepared by a surface imprinting technique with bifunctional monomers pre-assembly system based on mesoporous silicon (SBA-15). The synthesized Cr(VI)-IIP was characterized by Fourier transmission infrared spectra (FT-IR), energy dispersive spectrometer (EDS), scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray powder diffractometer, N2 adsorption-desorption and thermogravimetric analysis (TGA), proving to be with a highly ordered mesoporous structure, as well as favorable thermal stability. The saturated adsorption amount was 96.32 mg/g, which was 2.7 times higher than that of non-imprinted polymer (NIP). Kinetic experiments showed that the adsorption equilibrium state was obtained within 70 min. In addition, in the selectivity experiments, Cr(VI)-IIP exhibited strong specific recognition ability for Cr(VI) and could realize the separation of Cr(VI) and Cr(III) from an aqueous solution. The dynamic adsorption experiments exhibited that the dynamic adsorption efficiency of Cr(VI)-IIP was as high as 71.57%. Meanwhile, the dynamic regeneration experiments showed that the adsorption amount of Cr(VI)-IIP did not decrease significantly after repeating for five times. All of the findings suggested that Cr(VI)-IIP could achieve precise identification as well as efficient separation of Cr(VI) from aqueous solution.


Asunto(s)
Polímeros , Silicio , Adsorción , Polímeros/química , Espectroscopía Infrarroja por Transformada de Fourier , Cromo/química , Aniones
9.
Am J Physiol Renal Physiol ; 318(1): F209-F215, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31813254

RESUMEN

Cisplatin can cause acute kidney injury (AKI), but the molecular mechanisms are not well understood. The objective of the present study was to examine the role of transforming growth factor-ß-activated kinase-1 (TAK1) in the pathogenesis of cisplatin-induced AKI. Wild-type mice and proximal tubule TAK1-deficient mice were treated with vehicle or cisplatin. Compared with wild-type control mice, proximal tubule TAK1-deficient mice had less severe kidney dysfunction, tubular damage, and apoptosis after cisplatin-induced AKI. Furthermore, conditional disruption of TAK1 in proximal tubular epithelial cells reduced caspase-3 activation, proinflammatory molecule expression, and JNK phosphorylation in the kidney in cisplatin-induced AKI. Taken together, cisplatin activates TAK1-JNK signaling pathway to promote tubular epithelial cell apoptosis and inflammation in cisplatin-induced AKI. Targeting TAK1 could be a novel therapeutic strategy against cisplatin-induced AKI.


Asunto(s)
Lesión Renal Aguda/genética , Antineoplásicos/efectos adversos , Cisplatino/efectos adversos , Riñón/metabolismo , Quinasas Quinasa Quinasa PAM/genética , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/patología , Animales , Apoptosis/genética , Células Epiteliales/patología , Riñón/patología , Quinasas Quinasa Quinasa PAM/metabolismo , Ratones , Ratones Noqueados , Fosforilación
10.
Nephrol Dial Transplant ; 35(9): 1491-1500, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32500132

RESUMEN

BACKGROUND: We have shown that the CXCL16/CXCR6 axis plays a critical role in recruiting inflammatory cells and bone marrow-derived fibroblasts into the kidney leading to renal injury and fibrosis. However, the underlying signaling mechanisms are not known. METHODS: In the present study, we examined the role of phosphoinositide-3 kinase γ (PI3Kγ) signaling in the recruitment of inflammatory cells and bone marrow-derived fibroblasts into the kidney and development of renal injury and fibrosis in an experimental model of hypertension induced by angiotensin II. RESULTS: Blood pressure was comparable between wild-type (WT) and PI3Kγ knockout (KO) mice at baseline. Angiotensin II treatment led to an increase in blood pressure that was similar between WT and PI3Kγ KO mice. Compared with WT mice, PI3Kγ KO mice were protected from angiotensin II-induced renal dysfunction and injury and developed less proteinuria. PI3Kγ deficiency suppressed bone marrow-derived fibroblast accumulation and myofibroblast formation in the kidney and inhibited total collagen deposition and extracellular matrix protein production in the kidney in response to angiotensin II. PI3Kγ deficiency inhibited the infiltration of F4/80+ macrophages and CD3+ T cells into the kidney and reduced gene expression levels of pro-inflammatory cytokines in the kidney following angiotensin II treatment. Finally, inhibition of PI3Kγ suppressed CXCL16-induced monocyte migration in vitro. CONCLUSION: These results indicate that PI3Kγ mediates the influx of macrophages, T cells and bone marrow-derived fibroblasts into the kidney resulting in kidney injury and fibrosis.


Asunto(s)
Lesión Renal Aguda/prevención & control , Angiotensina II/toxicidad , Fosfatidilinositol 3-Quinasa Clase Ib/fisiología , Fibrosis/prevención & control , Hipertensión/complicaciones , Lesión Renal Aguda/etiología , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/patología , Animales , Citocinas/metabolismo , Modelos Animales de Enfermedad , Fibroblastos/metabolismo , Fibroblastos/patología , Fibrosis/etiología , Fibrosis/metabolismo , Fibrosis/patología , Hipertensión/inducido químicamente , Hipertensión/patología , Macrófagos/metabolismo , Macrófagos/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miofibroblastos/metabolismo , Miofibroblastos/patología , Linfocitos T/metabolismo , Linfocitos T/patología , Vasoconstrictores/toxicidad
11.
Plant Cell Rep ; 39(3): 393-408, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31834482

RESUMEN

KEY MESSAGE: Retrotransposon insertion in Brachytic2 generated a new incomplete recessive dwarf allele after spaceflight can moderately reduce plant height in heterozygous and potentially improve maize yield. Plant height and ear height are two important agronomic traits in maize breeding. In this study, two dwarf mutants short internode length1 (sil1) and short internode length2 (sil2) were obtained from two of 398 spaceflighted seeds of inbred line 18-599. The decrease in longitudinal cell number and cell length led to the shortened internodes of sil1 and sil2. A Ty1-copia LTR-retrotransposon, termed ZmRE-1, inserted in the fifth exon of Brachytic2 (Br2) was identified in sil1 and sil2 at exactly the same site, which indicated the transposition of ZmRE-1 probably correlated with the spaceflight. This new dwarf mutant allele was named as br2-sil in this study. The insertion of ZmRE-1 not only led to the loss of normal transcript of Br2 allele, but also reduced the transcript expression of br2-sil allele. Chop-qPCR displayed that the promoter region DNA methylation level of br2-sil allele in sil1 was higher than that of Br2 allele in WT-sil1. We speculated that the increased methylation level might downregulate the br2-sil expression. There was no difference in the seed-setting rate between sil1 and WT-sil1. Meanwhile, br2-sil could reduce plant and ear height effectively in Br2/br2-sil genotype without negative effects on grain yield. Therefore, the application of br2-sil in breeding has the potential to improve the grain yield per unit area through increasing the planting density.


Asunto(s)
Mutagénesis Insercional/genética , Mutación/genética , Proteínas de Plantas/genética , Retroelementos/genética , Vuelo Espacial , Zea mays/anatomía & histología , Zea mays/genética , Alelos , Secuencia de Bases , Metilación de ADN/genética , Regulación de la Expresión Génica de las Plantas , Genes Recesivos , Estudios de Asociación Genética , Sitios Genéticos , Heterocigoto , Homocigoto , Endogamia , Filogenia , Regiones Promotoras Genéticas/genética , Carácter Cuantitativo Heredable , Reproducibilidad de los Resultados
12.
Kidney Int ; 93(1): 81-94, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28739141

RESUMEN

Chronic kidney disease is a major cause of death, and renal fibrosis is a common pathway leading to the progression of this disease. Although activated fibroblasts are responsible for the production of the extracellular matrix and the development of renal fibrosis, the molecular mechanisms underlying fibroblast activation are not fully defined. Here we examined the functional role of AMP-activated protein kinase (AMPK) in the activation of fibroblasts and the development of renal fibrosis. AMPKα1 was induced in the kidney during the development of renal fibrosis. Mice with global or fibroblast-specific knockout of AMPKα1 exhibited fewer myofibroblasts, developed less fibrosis, and produced less extracellular matrix protein in the kidneys following unilateral ureteral obstruction or ischemia-reperfusion injury. Mechanistically, AMPKα1 directly phosphorylated cofilin leading to cytoskeleton remodeling and myocardin-related transcription factor-A nuclear translocation resulting in fibroblast activation and extracellular matrix protein production. Thus, AMPK may be a critical regulator of fibroblast activation through regulation of cytoskeleton dynamics and myocardin-related transcription factor-A nuclear translocation. Hence, AMPK signaling may represent a novel therapeutic target for fibrotic kidney disease.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Fibroblastos/enzimología , Riñón/enzimología , Miofibroblastos/enzimología , Insuficiencia Renal Crónica/enzimología , Daño por Reperfusión/enzimología , Transactivadores/metabolismo , Proteínas Quinasas Activadas por AMP/deficiencia , Proteínas Quinasas Activadas por AMP/genética , Transporte Activo de Núcleo Celular , Animales , Cofilina 1/metabolismo , Modelos Animales de Enfermedad , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Fibroblastos/patología , Fibrosis , Células HEK293 , Humanos , Riñón/patología , Masculino , Ratones Noqueados , Mutación , Miofibroblastos/patología , Fosforilación , Insuficiencia Renal Crónica/etiología , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/patología , Daño por Reperfusión/etiología , Daño por Reperfusión/genética , Daño por Reperfusión/patología , Transducción de Señal , Factores de Transcripción/metabolismo , Obstrucción Ureteral/complicaciones
13.
Kidney Int ; 92(6): 1433-1443, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28739140

RESUMEN

Renal fibrosis is a common pathway leading to the progression of chronic kidney disease, and bone marrow-derived fibroblasts contribute significantly to the development of renal fibrosis. However, the signaling mechanisms underlying the activation of these fibroblasts are not completely understood. Here, we examined the role of IL-4 receptor α (IL-4Rα) in the activation of myeloid fibroblasts in two experimental models of renal fibrosis. Compared with wild-type mice, IL-4Rα knockout mice accumulated fewer bone marrow-derived fibroblasts and myofibroblasts in their kidneys. IL-4Rα deficiency suppressed the expression of α-smooth muscle actin, extracellular matrix proteins and the development of renal fibrosis. Furthermore, IL-4Rα deficiency inhibited the activation of signal transducer and activator of transcription 6 (STAT6) in the kidney. Moreover, wild-type mice engrafted with bone marrow cells from IL-4Rα knockout mice exhibited fewer myeloid fibroblasts in the kidney and displayed less severe renal fibrosis following ureteral obstructive injury compared with wild-type mice engrafted with wild-type bone marrow cells. In vitro, IL-4 activated STAT6 and stimulated expression of α-smooth muscle actin and fibronectin in mouse bone marrow monocytes. This was abolished in the absence of IL-4Rα. Thus, IL-4Rα plays an important role in bone marrow-derived fibroblast activation, resulting in extracellular matrix protein production and fibrosis development. Hence, the IL-4Rα/STAT6 signaling pathway may serve as a novel therapeutic target for chronic kidney disease.


Asunto(s)
Células de la Médula Ósea/inmunología , Fibroblastos/inmunología , Riñón/patología , Receptores de Superficie Celular/inmunología , Insuficiencia Renal Crónica/inmunología , Factor de Transcripción STAT6/metabolismo , Actinas/metabolismo , Animales , Células de la Médula Ósea/metabolismo , Trasplante de Médula Ósea , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Proteínas de la Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Fibrosis , Ácido Fólico/toxicidad , Humanos , Riñón/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Monocitos/inmunología , Monocitos/metabolismo , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Insuficiencia Renal Crónica/etiología , Insuficiencia Renal Crónica/patología , Factor de Transcripción STAT6/inmunología , Transducción de Señal , Células Th2/inmunología , Células Th2/metabolismo
14.
Kidney Int ; 92(2): 336-348, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28506762

RESUMEN

Chronic kidney disease (CKD) and related inflammatory responses stimulate protein-energy wasting, a complication causing loss of muscle mass. Primarily, muscle wasting results from accelerated protein degradation via autophagic/lysosomal and proteasomal pathways, but mechanisms regulating these proteolysis pathways remain unclear. Since dephosphorylation of FoxOs regulates ubiquitin/proteasome protein metabolism, we tested whether a novel nuclear phosphatase, the small C-terminal domain phosphatase (SCP) 4, regulates FoxOs signaling and, in turn, muscle wasting. In cultured mouse myoblast cells, SCP4 overexpression stimulated proteolysis, while knockdown of SCP4 prevented the proteolysis stimulated by inflammatory cytokines. SCP4 overexpression led to nuclear accumulation of FoxO1/3a followed by increased expression of catabolic factors including myostatin, Atrogin-1, and MuRF-1, and induction of lysosomal-mediated proteolysis. Treatment of C2C12 myotubes with proinflammatory cytokines stimulated SCP4 expression in an NF-κB-dependent manner. In skeletal muscle of mice with CKD, SCP4 expression was up-regulated. Similarly, in skeletal muscle of patients with CKD, SCP4 expression was significantly increased. Knockdown of SCP4 significantly suppressed FoxO1/3a-mediated expression of Atrogin-1 and MuRF-1 and prevented muscle wasting in mice with CKD. Thus, SCP4 is a novel regulator of FoxO transcription factors and promotes cellular proteolysis. Hence, targeting SCP4 may prevent muscle wasting in CKD and possibly other catabolic conditions.


Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Músculo Esquelético/enzimología , Fosfoproteínas Fosfatasas/metabolismo , Insuficiencia Renal Crónica/complicaciones , Síndrome Debilitante/etiología , Animales , Humanos , Masculino , Ratones Endogámicos C57BL , Proteínas Musculares/metabolismo , Proteolisis , Insuficiencia Renal Crónica/enzimología , Proteínas Ligasas SKP Cullina F-box/metabolismo , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Síndrome Debilitante/enzimología
15.
J Am Soc Nephrol ; 27(2): 509-19, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26054539

RESUMEN

In patients with CKD, muscle wasting is common and is associated with morbidity and mortality. Mechanisms leading to loss of muscle proteins include insulin resistance, which suppresses Akt activity and thus stimulates protein degradation via the ubiquitin-proteasome system. However, the specific factors controlling CKD-induced suppression of Akt activity in muscle remain undefined. In mice with CKD, the reduction in Akt activity in muscle exceeded the decrease in upstream insulin receptor substrate-1-associated phosphatidylinositol 3-kinase activity, suggesting that CKD activates other pathways that suppress Akt. Furthermore, a CKD-induced increase uncovered caspase-3 activity in muscle in these mice. In C2C12 muscle cells, activated caspase-3 cleaves and activates Rho-associated protein kinase 1 (ROCK1), which enhances the activity of phosphatase and tensin homolog (PTEN) and reduces Akt activity. Notably, constitutive activation of ROCK1 also led to increased caspase-3 activity in vitro. In mice with either global ROCK1 knockout or muscle-specific PTEN knockout, CKD-associated muscle proteolysis was blunted. These results suggest ROCK1 activation in CKD and perhaps in other catabolic conditions can promote loss of muscle protein via a negative feedback loop.


Asunto(s)
Proteínas Musculares/metabolismo , Insuficiencia Renal Crónica/metabolismo , Quinasas Asociadas a rho/fisiología , Animales , Caspasa 3/fisiología , Masculino , Ratones , Fosfohidrolasa PTEN/fisiología
16.
J Pathol ; 236(1): 30-40, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25641678

RESUMEN

In diabetic nephropathy (DN), podocyte cytoskeletal rearrangement occurs followed by podocyte effacement and the development of proteinuria. PTEN (phosphatase and tensin homologue) is a ubiquitously expressed phosphatase that plays a critical role in cell proliferation, cytoskeletal rearrangement, and motility. In mouse models of diabetes mellitus, PTEN expression is reportedly decreased in mesangial cells, contributing to expansion of the mesangial matrix, but how PTEN in the podocyte influences the development of DN is unknown. We observed that PTEN expression is down-regulated in the podocytes of diabetic db/db mice and patients with DN. In cultured podocytes, PTEN inhibition caused actin cytoskeletal rearrangement and this response was associated with unbalanced activation of the small GTPases Rac1/Cdc42 and RhoA. In mice treated with PTEN inhibitor, actin cytoskeletal rearrangement occurred in podocytes and was accompanied by increased albumin excretion. We also created mice with an inducible deletion of PTEN selectively in podocytes. These mice exhibited increased albumin excretion and moderate foot process effacement. When the mice were challenged with a high fat diet, podocyte-specific knockout of PTEN resulted in substantially increased proteinuria and glomeruloclerosis compared to control mice fed a high fat diet or mice with PTEN deletion fed a normal diet. These results indicate that PTEN is involved in the regulation of cytoskeletal rearrangement in podocytes and that loss of PTEN predisposes to the development of proteinuria and DN.


Asunto(s)
Citoesqueleto/patología , Nefropatías Diabéticas/metabolismo , Fosfohidrolasa PTEN/metabolismo , Podocitos/metabolismo , Albuminuria/metabolismo , Animales , Citoesqueleto/metabolismo , Nefropatías Diabéticas/patología , Modelos Animales de Enfermedad , Mesangio Glomerular/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Ratones , Podocitos/patología
17.
J Am Soc Nephrol ; 24(10): 1644-59, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23833260

RESUMEN

Bone marrow-derived fibroblasts may contribute substantially to the pathogenesis of renal fibrosis through the excessive production and deposition of extracellular matrix. However, the mechanisms underlying the accumulation and activation of these fibroblasts are not understood. Here, we used a mouse model of tubulointerstitial fibrosis to determine whether adiponectin, which is elevated in CKD and is associated with disease progression, regulates monocyte-to-fibroblast transition and fibroblast activation in injured kidneys. In wild-type mice, the expression of adiponectin and the number of bone marrow-derived fibroblasts in the kidney increased after renal obstruction. In contrast, the obstructed kidneys of adiponectin-knockout mice had fewer bone marrow-derived fibroblasts. Adiponectin deficiency also led to a reduction in the number of myofibroblasts, the expression of profibrotic chemokines and cytokines, and the number of procollagen-expressing M2 macrophages in injured kidneys. Consistent with these findings, adiponectin-deficiency reduced the expression of collagen I and fibronectin. Similar results were observed in wild-type and adiponectin-knockout mice after ischemia-reperfusion injury. In cultured bone marrow-derived monocytes, adiponectin stimulated the expression of α-smooth muscle actin (SMA) and extracellular matrix proteins and activated AMP-activated protein kinase (AMPK) in a time- and dose-dependent manner. Furthermore, specific activation of AMPK increased the expression of α-SMA and extracellular matrix proteins, while inhibition of AMPK attenuated these responses. Taken together, these findings identify adiponectin as a critical regulator of monocyte-to-fibroblast transition and renal fibrosis, suggesting that inhibition of adiponectin/AMPK signaling may represent a novel therapeutic target for fibrotic kidney disease.


Asunto(s)
Adiponectina/metabolismo , Fibroblastos/patología , Riñón/patología , Monocitos/fisiología , Nefroesclerosis/etiología , Nefroesclerosis/patología , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Citocinas/metabolismo , Fibrosis , Masculino , Ratones , Ratones Endogámicos C57BL , Nefroesclerosis/metabolismo , Daño por Reperfusión/patología , Células Th2/metabolismo , Obstrucción Ureteral/patología
18.
Sci Total Environ ; 912: 168730, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38007118

RESUMEN

Climate change altered the quantities of aboveground plant litter and root inputs, but the effects on soil CH4 uptake rates and underlying mechanisms remain unclear. To investigate these factors, a three-year detritus input and removal treatment (DIRT) study including six treatments (namely, CK, control; NL, litter removal; DL, double litter; NR, root exclusion; NRNL, root exclusion plus litter removal; and NRDL, root exclusion plus double litter) was conducted in broadleaf and coniferous forest subalpine forest ecosystems. The results showed that both the subalpine forest soils acted as sink for atmospheric CH4 across all treatments, while the broadleaf forest had consistently higher CH4 uptake rates than the coniferous forest. Based on the annual mean values, root exclusion (NR, NRNL and NRDL) significantly decreased soil CH4 uptake rates by 35.9 %, 31.0 % and 43.4 % in the broadleaf forest and 36.7 %, 31.9 % and 40.6 % in the coniferous forest compared with CK treatments, respectively. Meanwhile, the mean soil CH4 uptake rates were significantly reduced by 23.6 % and 17.3 % in the broadleaf forest and the coniferous forest under the DL treatments, respectively; nevertheless, the NL treatment significantly increased soil CH4 uptake rates by 19.68 % and 14.4 %, respectively. The results clearly demonstrated that root exclusion exerted a greater influence on soil CH4 uptake rates than plant litter manipulations. Correlation and redundancy analysis (RDA) revealed that the separation of root exclusion treatments from aboveground plant litter manipulations was based on higher soil water content, NH4+-N and NO3--N concentrations, and lower DOC (dissolved organic carbon) concentrations and methanotroph pmoA gene abundance. The results suggest that future alterations in aboveground plant litter and root input, particularly a reduction in root input, can exert a stronger influence on regulating soil CH4 uptake than aboveground litter manipulations in subalpine forests with cold and humid climatic conditions in response to future climate scenarios.


Asunto(s)
Suelo , Tracheophyta , Suelo/química , Ecosistema , Temperatura , Bosques , Plantas
19.
Sci Total Environ ; 926: 171816, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38513851

RESUMEN

The evapotranspiration (ET) plays a crucial role in shaping regional climate patterns and serves as a vital indicator of ecosystem function. However, there remains a limited understanding of the seasonal variability of future ET over China and its correlation with environmental drivers. This study evaluated the skills of 27 models from the Six Phase of Coupled Model Intercomparison Project in modeling ET and the Bayesian Model Averaging (BMA) method was employed to merge monthly simulated ET based on the top five best-performing models. The seasonal changes in ET under three climate scenarios from 2030 to 2099 were analyzed based on the BMA-merged ET, which was well validated with observed ET collected from fourteen flux sites across China. Significant increasing ET over China are projected under all seasons during 2030-2099, with 0.05-0.13 mm yr-1, 0.11-0.23 mm yr-1, and 0.20-0.41 mm yr-1 under SSP1-2.6, SSP2-4.5 and SSP5-8.5 scenarios, respectively. Relative to the historical period (1980-2014), the relative increase in ET over China is highest in winter and lowest in summer. Seasonal ET increases significantly in all seven climate sub-regions under high forcing scenario. Higher ET increase is generally found in southeastern humid regions, while lowest ET increase occurs in northwest China. At the country level, the primary factor driving ET increase during spring, summer, and autumn seasons is the increasing net radiation and warming. In contrast, ET increase during winter is influenced not only by energy factors but also by vegetation-related factors. Future seasonal ET increase is predominantly driven by increasing energy factors in the southeastern humid region and Tibetan Plateau, while seasonal ET changes in the northwest region prevailingly depend on soil moisture. Results indicate that China will experience a "wet season will get wetter, and dry season will become drier" in the 21st century with high radiation forcing scenario.

20.
Int Urol Nephrol ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38865001

RESUMEN

PURPOSE: This study investigates the prognostic value of skeletal muscle index (SMI) and skeletal muscle radiodensity (SMD) measured by chest CT in relation to all-cause and cardiovascular disease (CVD) mortality among hemodialysis (HD) patients. METHODS: A retrospective study was conducted from January 2015 to December 2021 involving HD patients at a dialysis center. Chest CT scans at the twelfth thoracic vertebra level (T12) were analyzed to assess SMI and SMD. Sex-specific cut-off values for two metrics were determined using maximally selected rank statistics. Hazard ratios (HRs) were calculated to evaluate the associations of SMI and SMD with mortality. The discrimination of prognostic models was also compared. RESULTS: The study included 603 patients with a median age of 58 years. Of these, 187 (31.0%) patients with SMI < 30.00 cm2/m2 (male) or < 25.04 cm2/m2 (female) and 192 (31.8%) patients with SMD < 32.25 HU (male) or < 30.64 HU (female) were categorized as lower SMI and SMD, respectively. Over a median follow-up of 3.8 years, 144 deaths occurred. Multivariate Cox regression analysis showed that lower SMI and SMD were independently associated with all-cause mortality (SMI: HR = 1.47, 95% CI 1.03-2.10; SMD: HR = 1.75, 95% CI 1.20-2.54) and CVD mortality (SMI: HR = 1.74, 95% CI 1.03-2.94; SMD: HR = 1.72, 95% CI 1.02-2.95). Adding SMI and SMD to the established risk model improved the C-index from 0.82 to 0.87 (P < 0.001). Decision curve analysis showed that the prognostic model incorporating both SMI and SMD offered the highest net benefit for predicting all-cause mortality. CONCLUSIONS: Muscle metrics derived from CT scans at T12 level provide valuable prognostic information which could enhance the role of chest CT in muscle assessment among HD patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA