Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Plant Physiol ; 190(1): 480-499, 2022 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-35640995

RESUMEN

Photoperiod-sensitive plants such as soybean (Glycine max) often face threats from herbivorous insects throughout their whole growth period and especially during flowering; however, little is known about the relationship between plant flowering and insect resistance. Here, we used gene editing, multiple omics, genetic diversity and evolutionary analyses to confirm that the calcium-dependent protein kinase GmCDPK38 plays a dual role in coordinating flowering time regulation and insect resistance of soybean. Haplotype 2 (Hap2)-containing soybeans flowered later and were more resistant to the common cutworm (Spodoptera litura Fabricius) than those of Hap3. gmcdpk38 mutants with Hap3 knocked out exhibited similar flowering and resistance phenotypes as Hap2. Knocking out GmCDPK38 altered numerous flowering- and resistance-related phosphorylated proteins, genes, and metabolites. For example, the S-adenosylmethionine synthase GmSAMS1 was post-translationally upregulated in the gmcdpk38 mutants. GmCDPK38 has abundant genetic diversity in wild soybeans and was likely selected during soybean domestication. We found that Hap2 was mostly distributed at low latitudes and had a higher frequency in cultivars than in wild soybeans, while Hap3 was widely selected at high latitudes. Overall, our results elucidated that the two distinct traits (flowering time and insect resistance) are mediated by GmCDPK38.


Asunto(s)
Calcio , Glycine max , Calcio/metabolismo , Domesticación , Flores/fisiología , Regulación de la Expresión Génica de las Plantas , Fotoperiodo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Glycine max/fisiología
2.
Eur Radiol ; 33(6): 4453-4463, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36502461

RESUMEN

OBJECTIVES: The differentiation of Warthin tumor and pleomorphic adenoma before treatment is crucial for clinical strategies. The aim of this study was to develop and test a T2-weighted-based radiomics model for differentiating pleomorphic adenoma from Warthin tumor of the parotid gland. METHODS: A total of 117 patients, including 61 cases of Warthin tumor and 56 cases of pleomorphic adenoma, were retrospectively enrolled from two centers between January 2010 and June 2022. The training set included 82 cases, and the validation set included 35 cases. From T2-weighted images, 971 radiomics features were extracted. Seven radiomics features remained after a two-step selection process. We used the seven radiomics features and clinical factors through multivariable logistic regression to build radiomics and clinical models, respectively. A radiomics-clinical model was also built that combined the independent clinical predictors with the radiomics features. Through ROC curves, the three models were evaluated and compared. RESULTS: In the radiomics model, AUCs were 0.826 and 0.796 in training and validation sets, respectively. In the clinical model, the AUCs were 0.923 and 0.926 in the training and validation sets, respectively. Decision curve analysis revealed that the radiomics-clinical model had the best diagnostic performance for distinguishing Warthin tumor from pleomorphic adenoma of the parotid gland (AUC = 0.962 and 0.934 for the training and validation sets, respectively). CONCLUSION: The radiomics-clinical model performed well in differentiating pleomorphic adenoma from Warthin tumor of the parotid gland. KEY POINTS: • The clinical model outperformed the radiomics model in distinguishing pleomorphic adenoma from Warthin tumor of the parotid gland. • The radiomics features extracted from T2-weighted images could help differentiate pleomorphic adenoma from Warthin tumor of the parotid gland. • The radiomics-clinical model was superior to the radiomics and the clinical models for differentiating pleomorphic adenoma from Warthin tumor of the parotid gland.


Asunto(s)
Adenolinfoma , Adenoma Pleomórfico , Neoplasias de la Parótida , Humanos , Glándula Parótida/diagnóstico por imagen , Glándula Parótida/patología , Adenoma Pleomórfico/diagnóstico por imagen , Adenoma Pleomórfico/patología , Adenolinfoma/diagnóstico por imagen , Adenolinfoma/patología , Neoplasias de la Parótida/diagnóstico por imagen , Neoplasias de la Parótida/patología , Estudios Retrospectivos , Imagen por Resonancia Magnética
3.
PLoS Genet ; 16(11): e1009114, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33175845

RESUMEN

Soybean [Glycine max (L.) Merr.] was domesticated from wild soybean (G. soja Sieb. and Zucc.) and has been further improved as a dual-use seed crop to provide highly valuable oil and protein for food, feed, and industrial applications. However, the underlying genetic and molecular basis remains less understood. Having combined high-confidence bi-parental linkage mapping with high-resolution association analysis based on 631 whole sequenced genomes, we mapped major soybean protein and oil QTLs on chromosome15 to a sugar transporter gene (GmSWEET39). A two-nucleotide CC deletion truncating C-terminus of GmSWEET39 was strongly associated with high seed oil and low seed protein, suggesting its pleiotropic effect on protein and oil content. GmSWEET39 was predominantly expressed in parenchyma and integument of the seed coat, and likely regulates oil and protein accumulation by affecting sugar delivery from maternal seed coat to the filial embryo. We demonstrated that GmSWEET39 has a dual function for both oil and protein improvement and undergoes two different paths of artificial selection. A CC deletion (CC-) haplotype H1 has been intensively selected during domestication and extensively used in soybean improvement worldwide. H1 is fixed in North American soybean cultivars. The protein-favored (CC+) haplotype H3 still undergoes ongoing selection, reflecting its sustainable role for soybean protein improvement. The comprehensive knowledge on the molecular basis underlying the major QTL and GmSWEET39 haplotypes associated with soybean improvement would be valuable to design new strategies for soybean seed quality improvement using molecular breeding and biotechnological approaches.


Asunto(s)
Glycine max/genética , Proteínas de Transporte de Monosacáridos/genética , Fitomejoramiento , Proteínas de Plantas/genética , Mapeo Cromosómico , Genoma de Planta/genética , Estudio de Asociación del Genoma Completo , Haplotipos , Proteínas de Transporte de Monosacáridos/metabolismo , América del Norte , Aceites de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Vegetales Comestibles/biosíntesis , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Semillas/metabolismo , Glycine max/metabolismo
4.
Proc Natl Acad Sci U S A ; 117(8): 4243-4251, 2020 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-32047036

RESUMEN

Host-parasite coevolution can maintain high levels of genetic diversity in traits involved in species interactions. In many systems, host traits exploited by parasites are constrained by use in other functions, leading to complex selective pressures across space and time. Here, we study genome-wide variation in the staple crop Sorghum bicolor (L.) Moench and its association with the parasitic weed Striga hermonthica (Delile) Benth., a major constraint to food security in Africa. We hypothesize that geographic selection mosaics across gradients of parasite occurrence maintain genetic diversity in sorghum landrace resistance. Suggesting a role in local adaptation to parasite pressure, multiple independent loss-of-function alleles at sorghum LOW GERMINATION STIMULANT 1 (LGS1) are broadly distributed among African landraces and geographically associated with S. hermonthica occurrence. However, low frequency of these alleles within S. hermonthica-prone regions and their absence elsewhere implicate potential trade-offs restricting their fixation. LGS1 is thought to cause resistance by changing stereochemistry of strigolactones, hormones that control plant architecture and below-ground signaling to mycorrhizae and are required to stimulate parasite germination. Consistent with trade-offs, we find signatures of balancing selection surrounding LGS1 and other candidates from analysis of genome-wide associations with parasite distribution. Experiments with CRISPR-Cas9-edited sorghum further indicate that the benefit of LGS1-mediated resistance strongly depends on parasite genotype and abiotic environment and comes at the cost of reduced photosystem gene expression. Our study demonstrates long-term maintenance of diversity in host resistance genes across smallholder agroecosystems, providing a valuable comparison to both industrial farming systems and natural communities.


Asunto(s)
Sorghum/genética , Striga/genética , Adaptación Fisiológica , Variación Genética , Genoma de Planta , Genómica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Malezas/genética , Malezas/fisiología , Sorghum/fisiología , Striga/fisiología
5.
BMC Genomics ; 23(1): 250, 2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35361112

RESUMEN

BACKGROUND: With advances in next-generation sequencing technologies, an unprecedented amount of soybean accessions has been sequenced by many individual studies and made available as raw sequencing reads for post-genomic research. RESULTS: To develop a consolidated and user-friendly genomic resource for post-genomic research, we consolidated the raw resequencing data of 1465 soybean genomes available in the public and 91 highly diverse wild soybean genomes newly sequenced. These altogether provided a collection of 1556 sequenced genomes of 1501 diverse accessions (1.5 K). The collection comprises of wild, landraces and elite cultivars of soybean that were grown in East Asia or major soybean cultivating areas around the world. Our extensive sequence analysis discovered 32 million single nucleotide polymorphisms (32mSNPs) and revealed a SNP density of 30 SNPs/kb and 12 non-synonymous SNPs/gene reflecting a high structural and functional genomic diversity of the new collection. Each SNP was annotated with 30 categories of structural and/or functional information. We further identified paired accessions between the 1.5 K and 20,087 (20 K) accessions in US collection as genomic "equivalent" accessions sharing the highest genomic identity for minimizing the barriers in soybean germplasm exchange between countries. We also exemplified the utility of 32mSNPs in enhancing post-genomics research through in-silico genotyping, high-resolution GWAS, discovering and/or characterizing genes and alleles/mutations, identifying germplasms containing beneficial alleles that are potentially experiencing artificial selection. CONCLUSION: The comprehensive analysis of publicly available large-scale genome sequencing data of diverse cultivated accessions and the newly in-house sequenced wild accessions greatly increased the soybean genome-wide variation resolution. This could facilitate a variety of genetic and molecular-level analyses in soybean. The 32mSNPs and 1.5 K accessions with their comprehensive annotation have been made available at the SoyBase and Ag Data Commons. The dataset could further serve as a versatile and expandable core resource for exploring the exponentially increasing genome sequencing data for a variety of post-genomic research.


Asunto(s)
Genómica , Glycine max , Mapeo Cromosómico , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de Secuencia de ADN , Glycine max/genética
6.
PLoS Genet ; 15(7): e1008267, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31291251

RESUMEN

Increasing seed oil content is one of the most important breeding goals for soybean due to a high global demand for edible vegetable oil. However, genetic improvement of seed oil content has been difficult in soybean because of the complexity of oil metabolism. Determining the major variants and molecular mechanisms conferring oil accumulation is critical for substantial oil enhancement in soybean and other oilseed crops. In this study, we evaluated the seed oil contents of 219 diverse soybean accessions across six different environments and dissected the underlying mechanism using a high-resolution genome-wide association study (GWAS). An environmentally stable quantitative trait locus (QTL), GqOil20, significantly associated with oil content was identified, accounting for 23.70% of the total phenotypic variance of seed oil across multiple environments. Haplotype and expression analyses indicate that an oleosin protein-encoding gene (GmOLEO1), colocated with a leading single nucleotide polymorphism (SNP) from the GWAS, was significantly correlated with seed oil content. GmOLEO1 is predominantly expressed during seed maturation, and GmOLEO1 is localized to accumulated oil bodies (OBs) in maturing seeds. Overexpression of GmOLEO1 significantly enriched smaller OBs and increased seed oil content by 10.6% compared with those of control seeds. A time-course transcriptomics analysis between transgenic and control soybeans indicated that GmOLEO1 positively enhanced oil accumulation by affecting triacylglycerol metabolism. Our results also showed that strong artificial selection had occurred in the promoter region of GmOLEO1, which resulted in its high expression in cultivated soybean relative to wild soybean, leading to increased seed oil accumulation. The GmOLEO1 locus may serve as a direct target for both genetic engineering and selection for soybean oil improvement.


Asunto(s)
Glycine max/crecimiento & desarrollo , Aceites de Plantas/metabolismo , Proteínas de Plantas/genética , Semillas/química , Domesticación , Ingeniería Genética , Estudio de Asociación del Genoma Completo , Haplotipos , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas , Sitios de Carácter Cuantitativo , Semillas/crecimiento & desarrollo , Glycine max/genética , Glycine max/metabolismo , Triglicéridos/metabolismo
7.
BMC Genomics ; 22(1): 453, 2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34134624

RESUMEN

BACKGROUND: Seeds are the economic basis of oilseed crops, especially soybeans, the most widely cultivated oilseed crop worldwide. Seed development is accompanied by a multitude of diverse cellular processes, and revealing the underlying regulatory activities is critical for seed improvement. RESULTS: In this study, we profiled the transcriptomes of developing seeds at 20, 25, 30, and 40 days after flowering (DAF), as these stages represent critical time points of seed development from early to full development. We identified a set of highly abundant genes and highlighted the importance of these genes in supporting nutrient accumulation and transcriptional regulation for seed development. We identified 8925 differentially expressed genes (DEGs) that exhibited temporal expression patterns over the course and expression specificities in distinct tissues, including seeds and nonseed tissues (roots, stems, and leaves). Genes specific to nonseed tissues might have tissue-associated roles, with relatively low transcript abundance in developing seeds, suggesting their spatially supportive roles in seed development. Coexpression network analysis identified several underexplored genes in soybeans that bridge tissue-specific gene modules. CONCLUSIONS: Our study provides a global view of gene activities and biological processes critical for seed formation in soybeans and prioritizes a set of genes for further study. The results of this study help to elucidate the mechanism controlling seed development and storage reserves.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Glycine max , Perfilación de la Expresión Génica , Semillas/genética , Glycine max/genética , Transcriptoma
8.
Planta ; 251(2): 39, 2020 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-31907621

RESUMEN

MAIN CONCLUSION: A total of 41 SNPs were identified as significantly associated with five yield-related traits in wild soybean populations across multiple environments, and the candidate gene GsCID1 was found to be associated with seed weight. These results may facilitate improvements in cultivated soybean. Crop-related wild species contain new sources of genetic diversity for crop improvement. Wild soybean (Glycine soja Sieb. and Zucc.) is the progenitor of cultivated soybean [Glycine max (L.) Merr.] and can be used as an essential genetic resource for yield improvements. In this research, using genome-wide association study (GWAS) in 96 out of 113 wild soybean accessions with 114,090 single nucleotide polymorphisms (SNPs) (with minor allele frequencies ≤ 0.05), SNPs associated with five yield-related traits were identified across multiple environments. In total, 41 SNPs were significantly associated with the traits in two or more environments (significance threshold P ≤ 8.76 × 10-6), with 29, 7, 3, and 2 SNPs detected for 100-seed weight (SW), maturity time (MT), seed yield per plant (SY) and flowering time (FT), respectively. BLAST search against the Glycine soja W05 reference genome was performed, 20 candidate genes were identified based on these 41 significant SNPs. One candidate gene, GsCID1 (Glysoja.04g010563), harbored two significant SNPs-AX-93713187, with a non-synonymous mutation, and AX-93713188, with a synonymous mutation. GsCID1 was highly expressed during seed development based on public information resources. The polymorphisms in this gene were associated with SW. We developed a derived cleaved amplified polymorphic sequence (dCAPS) marker for GsCID1 that was highly associated with SW and was validated as a functional marker. In summary, the revealed SNPs/genes are useful for understanding the genetic architecture of yield-related traits in wild soybean, which could be used as a potential exotic resource to improve cultivated soybean yields.


Asunto(s)
Estudio de Asociación del Genoma Completo/métodos , Glycine max/genética , Desequilibrio de Ligamiento/genética , Genoma de Planta/genética , Genotipo , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética
9.
Plant Cell Environ ; 43(9): 2080-2094, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32515009

RESUMEN

Soybean is a high inorganic phosphate (Pi) demanding crop; its production is strongly suppressed when Pi is deficient in soil. However, the regulatory mechanism of Pi deficiency tolerance in soybean is still largely unclear. Here, our findings highlighted the pivotal role of the ethylene-associated pathway in soybean tolerance to Pi deficiency by comparatively studying transcriptome changes between a representative Pi-deficiency-tolerant soybean genotype NN94156 and a sensitive genotype Bogao under different Pi supplies. By further integrating high-confident linkage and association mapping, we identified that Ethylene-Overproduction Protein 1 (GmETO1), an essential ethylene-biosynthesis regulator, underlies the major quantitative trait locus (QTL) q14-2 controlling Pi uptake. GmETO1 was also the representative member of ETO1 family members that was strongly induced by Pi deficiency. Overexpressing GmETO1 significantly enhanced Pi deficiency tolerance by increasing proliferation and elongation of hairy roots, Pi uptake and use efficiency, and conversely, silencing of GmETO1 led to opposite findings. We further demonstrated that Pi-deficiency inducible genes critical for root morphological and physiological traits including GmACP1/2, Pht1;4, Expansin-A7 and Root Primordium Defective 1 functioned downstream of GmETO1. Our study provides comprehensive insight into the complex regulatory mechanism of Pi deficiency tolerance in soybean and a potential way to genetically improve soybean low-Pi tolerance.


Asunto(s)
Glycine max/metabolismo , Fósforo/metabolismo , Proteínas de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Genotipo , Fósforo/farmacocinética , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Sitios de Carácter Cuantitativo , Glycine max/genética , Glycine max/crecimiento & desarrollo , Regulación hacia Arriba
10.
Theor Appl Genet ; 133(10): 2927-2935, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32617615

RESUMEN

KEY MESSAGE: The recessive Hessian fly resistance gene h4 and flanking SNP markers were located to a 642 kb region in chromosome 1A of the wheat cultivar 'Java.' Hessian fly (HF), Mayetiola destructor, is one of the most destructive insect pests in wheat worldwide. The wheat cultivar 'Java' was reported to carry a recessive gene (h4) for HF resistance; however, its chromosome location has not been determined. To map the HF resistance gene in Java, two populations of recombinant inbred lines (RILs) were developed from 'Bobwhite' × Java and 'Overley' × Java, respectively, and were phenotyped for responses to infestation of HF Great Plains biotype. Analysis of phenotypic data from the F1 and the RIL populations confirmed that one recessive gene conditioned HF resistance in Java. Two linkage maps were constructed using single-nucleotide polymorphism (SNP) markers generated by genotyping-by-sequencing (GBS). The h4 gene was mapped to the distal end of the short arm of chromosome 1A, which explained 60.4 to 70.5% of the phenotypic variation for HF resistance in the two populations. The GBS-SNPs in the h4 candidate interval were converted into Kompetitive Allele-Specific Polymerase Chain Reaction (KASP) markers to eliminate the missing data points in GBS-SNPs. Using the revised maps with KASP markers, h4 was further located to a 642 kb interval (6,635,984-7,277,935 bp). The two flanking KASP markers, KASP3299 and KASP1871, as well as four other closely linked KASP markers, may be useful for pyramiding h4 with other HF resistance genes in breeding.


Asunto(s)
Dípteros , Genes Recesivos , Triticum/genética , Alelos , Animales , Mapeo Cromosómico , Cromosomas de las Plantas , Genes de Plantas , Ligamiento Genético , Marcadores Genéticos , Genotipo , Herbivoria , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo
11.
Heredity (Edinb) ; 124(1): 108-121, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31316156

RESUMEN

Seed mass is a key component of adaptation in plants and a determinant of yield in crops. The climatic drivers and genomic basis of seed mass variation remain poorly understood. In the cereal crop Sorghum bicolor, globally-distributed landraces harbor abundant variation in seed mass, which is associated with precipitation in their agroclimatic zones of origin. This study aimed to test the hypothesis that diversifying selection across precipitation gradients, acting on ancestral cereal grain size regulators, underlies seed mass variation in global sorghum germplasm. We tested this hypothesis in a set of 1901 georeferenced and genotyped sorghum landraces, 100-seed mass from common gardens, and bioclimatic precipitation variables. As predicted, 100-seed mass in global germplasm varies significantly among botanical races and is correlated to proxies of the precipitation gradients. With general and mixed linear model genome-wide associations, we identified 29 and 56 of 100 a priori candidate seed size genes with polymorphisms in the top 1% of seed mass association, respectively. Eleven of these genes harbor polymorphisms associated with the precipitation gradient, including orthologs of genes that regulate seed size in other cereals. With FarmCPU, 13 significant SNPs were identified, including one at an a priori candidate gene. Finally, we identified eleven colocalized outlier SNPs associated with seed mass and precipitation that also carry signatures of selection based on FST scans and PCAdapt, which represents a significant enrichment. Our findings suggest that seed mass in sorghum was shaped by diversifying selection on drought stress, and can inform genomics-enabled breeding for climate-resilient cereals.


Asunto(s)
Aclimatación/genética , Lluvia , Semillas/crecimiento & desarrollo , Sorghum/genética , Grano Comestible/genética , Estudios de Asociación Genética , Genotipo , Polimorfismo de Nucleótido Simple
12.
Genome ; 61(4): 223-232, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29432699

RESUMEN

Improving adaptation of staple crops in developing countries is important to ensure food security. In the West African country of Niger, the staple crop sorghum (Sorghum bicolor) is cultivated across diverse agroclimatic zones, but the genetic basis of local adaptation has not been described. The objectives of this study were to characterize the genomic diversity of sorghum from Niger and to identify genomic regions conferring local adaptation to agroclimatic zones and farmer preferences. We analyzed 516 Nigerien accessions for which local variety name, botanical race, and geographic origin were known. We discovered 144 299 single nucleotide polymorphisms (SNPs) using genotyping-by-sequencing (GBS). We performed discriminant analysis of principal components (DAPC), which identified six genetic groups, and performed a genome scan for loci with high discriminant loadings. The highest discriminant coefficients were on chromosome 9, near the putative ortholog of maize flowering time adaptation gene Vgt1. Next, we characterized differentiation among local varieties and used a genome scan of pairwise FST values to identify SNPs associated with specific local varieties. Comparison of varieties named for light- versus dark-grain identified differentiation near Tannin1, the major gene responsible for grain tannins. These findings could facilitate genomics-assisted breeding of locally adapted and farmer-preferred sorghum varieties for Niger.


Asunto(s)
Agricultura/métodos , Clima , Productos Agrícolas/genética , Genómica/métodos , Sorghum/genética , Adaptación Fisiológica/genética , Productos Agrícolas/crecimiento & desarrollo , Genética de Población , Genoma de Planta/genética , Genotipo , Niger , Fitomejoramiento/métodos , Polimorfismo de Nucleótido Simple , Sorghum/crecimiento & desarrollo
14.
Breed Sci ; 66(4): 530-541, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27795678

RESUMEN

Salt tolerance in soybean [Glycine max (L.) Merr.] at the seed germination stage is a critical determinant of stable stand establishment in saline soil. This study examined one population of 184 recombinant inbred lines (RILs, F7:11) derived from a cross between Kefeng1 and Nannong1138-2 and one natural population consisting of 196 soybean landraces. A total of 11 quantitative trait loci (QTLs) and 22 simple sequence repeat (SSR) loci associated with three salt tolerance indices were detected by linkage and association mapping. The SSR marker Sat_162 was found to be closely linked to the co-localized QTLs at a site 792,811 bp from the gene Glyma08g12400.1, which was verified in response to salt stress at the germination stage. Five SSR markers, Satt201, BE475343, CSSR306, Satt664 and Satt567, were co-associated with two of the salt tolerance indices, and two SSR markers, Satt156 and Satt636, were co-associated with all three salt tolerance indices. Furthermore, elite alleles and their carrier materials were identified by analyzing alleles at the loci associated with these salt tolerance indices. These results may be beneficial for the future breeding of soybean salt tolerance at the germination stage using marker-assisted selection and molecular pyramiding breeding.

15.
BMC Genomics ; 16: 1048, 2015 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-26654432

RESUMEN

BACKGROUND: Pearl millet is a staple food for people in arid and semi-arid regions of Africa and South Asia due to its high drought tolerance and nutritional qualities. A better understanding of the genomic diversity and population structure of pearl millet germplasm is needed to support germplasm conservation and genetic improvement of this crop. Here we characterized two pearl millet diversity panels, (i) a set of global accessions from Africa, Asia, and the America, and (ii) a collection of landraces from multiple agro-ecological zones in Senegal. RESULTS: We identified 83,875 single nucleotide polymorphisms (SNPs) in 500 pearl millet accessions, comprised of 252 global accessions and 248 Senegalese landraces, using genotyping by sequencing (GBS) of PstI-MspI reduced representation libraries. We used these SNPs to characterize genomic diversity and population structure among the accessions. The Senegalese landraces had the highest levels of genetic diversity (π), while accessions from southern Africa and Asia showed lower diversity levels. Principal component analyses and ancestry estimation indicated clear population structure between the Senegalese landraces and the global accessions, and among countries in the global accessions. In contrast, little population structure was observed across in the Senegalese landraces collections. We ordered SNPs on the pearl millet genetic map and observed much faster linkage disequilibrium (LD) decay in Senegalese landraces compared to global accessions. A comparison of pearl millet GBS linkage map with the foxtail millet (Setaria italica) and sorghum (Sorghum bicolor) genomes indicated extensive regions of synteny, as well as some large-scale rearrangements in the pearl millet lineage. CONCLUSIONS: We identified 83,875 SNPs as a genomic resource for pearl millet improvement. The high genetic diversity in Senegal relative to other regions of Africa and Asia supports a West African origin of this crop, followed by wide diffusion. The rapid LD decay and lack of confounding population structure along agro-ecological zones in Senegalese pearl millet will facilitate future association mapping studies. Comparative population genomics will provide insights into panicoid crop evolution and support improvement of these climate-resilient crops.


Asunto(s)
Técnicas de Genotipaje/métodos , Pennisetum/genética , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN/métodos , ADN de Plantas/análisis , Variación Genética , Desequilibrio de Ligamiento , Metagenómica , Pennisetum/clasificación , Filogeografía , Análisis de Componente Principal
16.
Mol Genet Genomics ; 290(6): 2147-62, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26001372

RESUMEN

Soil salinity is a serious threat to agriculture sustainability worldwide. Seed germination is a critical phase that ensures the successful establishment and productivity of soybeans in saline soils. However, little information is available regarding soybean salt tolerance at the germination stage. The objective of this study was to identify the genetic mechanisms of soybean seed germination under salt stress. One natural population consisting of 191 soybean landraces was used in this study. Soybean seeds produced in four environments were used to evaluate the salt tolerance at their germination stage. Using 1142 single-nucleotide polymorphisms (SNPs), the molecular markers associated with salt tolerance were detected by genome-wide association analysis. Eight SNP-trait associations and 13 suggestive SNP-trait associations were identified using a mixed linear model and the TASSEL 4.0 software. Eight SNPs or suggestive SNPs were co-associated with two salt tolerance indices, namely (1) the ratio of the germination index under salt conditions to the germination index under no-salt conditions (ST-GI) and (2) the ratio of the germination rate under salt conditions to the germination rate under no-salt conditions (ST-GR). One SNP (BARC-021347-04042) was significantly associated with these two traits (ST-GI and ST-GR). In addition, nine possible candidate genes were located in or near the genetic region where the above markers were mapped. Of these, five genes, Glyma08g12400.1, Glyma08g09730.1, Glyma18g47140.1, Glyma09g00460.1, and Glyma09g00490.3, were verified in response to salt stress at the germination stage. The SNPs detected could facilitate a better understanding of the genetic basis of soybean salt tolerance at the germination stage, and the marker BARC-021347-04042 could contribute to future breeding for soybean salt tolerance by marker-assisted selection.


Asunto(s)
Germinación , Glycine max/embriología , Semillas/crecimiento & desarrollo , Cloruro de Sodio , Estrés Fisiológico , Adaptación Fisiológica , Polimorfismo de Nucleótido Simple , Glycine max/genética , Glycine max/fisiología
17.
J Integr Plant Biol ; 57(8): 722-9, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25532561

RESUMEN

Soybean mosaic virus (SMV) disease is one of the most serious and broadly distributed soybean (Glycine max (L.) Merr.) diseases. Here, we combine the advantages of association and linkage analysis to identify and fine-map the soybean genes associated with resistance to SMV strain SC7. A set of 191 soybean accessions from different geographic origins and 184 recombinant inbred lines (RILs) derived from Kefeng No.1 (resistant) × Nannong 1138-2 (susceptible) were used in this study. The SC7 resistance genes were previously mapped to a 2.65 Mb region on chromosome 2 and a 380 kb region on chromosome 13. Among 19 single nucleotide polymorphisms (SNPs) detected via association analysis in the study, the SNP BARC-021625-04157 was located in the 2.65 Mb region, and the SNP BARC-041671-08065 was located near the 380 kb region; three genes harboring the SNPs were probably related to SC7 resistance. The resistance gene associated with BARC-021625-04157 was then fine-mapped to a region of approximately 158 kb on chromosome 2 using 184 RILs. Among the 15 genes within this region, one NBS-LRR type gene, one HSP40 gene and one serine carboxypeptidase-type gene might be candidate SC7 resistance genes. These results will be useful for map-based cloning and marker-assisted selection in soybean breeding programs.


Asunto(s)
Resistencia a la Enfermedad/genética , Genes de Plantas , Estudios de Asociación Genética , Ligamiento Genético , Glycine max/genética , Mapeo Físico de Cromosoma/métodos , Enfermedades de las Plantas/genética , Análisis de Varianza , Cromosomas de las Plantas , Patrón de Herencia/genética , Anotación de Secuencia Molecular , Virus del Mosaico/fisiología , Fenotipo , Enfermedades de las Plantas/virología , Polimorfismo de Nucleótido Simple , Recombinación Genética/genética , Glycine max/virología
18.
BMC Genomics ; 15: 510, 2014 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-24952381

RESUMEN

BACKGROUND: Soybean is one of the most economically important crops in the world. The cotyledon is the nutrient storage area in seeds, and it is critical for seed quality and yield. Cotyledon mutants are important for the genetic dissection of embryo patterning and seed development. However, the molecular mechanisms underlying soybean cotyledon development are largely unexplored. RESULTS: In this study, we characterised a soybean curled-cotyledon (cco) mutant. Compared with wild-type (WT), anatomical analysis revealed that the cco cotyledons at the torpedo stage became more slender and grew outward. The entire embryos of cco mutant resembled the "tail of swallow". In addition, cco seeds displayed reduced germination rate and gibberellic acid (GA3) level, whereas the abscisic acid (ABA) and auxin (IAA) levels were increased. RNA-seq identified 1,093 differentially expressed genes (DEGs) between WT and the cco mutant. The KEGG pathway analysis showed many DEGs were mapped to the hormone biosynthesis and signal transduction pathways. Consistent with assays of hormones in seeds, the results of RNA-seq indicated auxin and ABA biosynthesis and signal transduction in cco were more active than in WT, while an early step in GA biosynthesis was blocked, as well as conversion rate of inactive GAs to bioactive GAs in GA signaling. Furthermore, genes participated in other hormone biosynthesis and signalling pathways such as cytokinin (CK), ethylene (ET), brassinosteroid (BR), and jasmonate acid (JA) were also affected in the cco mutant. CONCLUSIONS: Our data suggest that multiple phytohormone biosynthesis and signal transduction pathways are reprogrammed in cco, and changes in these pathways may partially contribute to the cco mutant phenotype, suggesting the involvement of multiple hormones in the coordination of soybean cotyledon development.


Asunto(s)
Cotiledón , Glycine max/genética , Glycine max/metabolismo , Mutación , Reguladores del Crecimiento de las Plantas/biosíntesis , Transducción de Señal , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Fenotipo , Análisis de Secuencia de ARN , Transcriptoma
19.
Theor Appl Genet ; 127(9): 1905-15, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24952096

RESUMEN

KEY MESSAGE: Four major SPC-specific loci were identified, and these accounted for 8.5-15.1 % of the phenotypic variation, thus explaining why certain soybean varieties have a high PC but a low SPC. Water-soluble protein content (SPC) is a critical factor in both food quality and the production of isolated soybean proteins. However, few data are available regarding the genetic control and the mechanisms contributing to elevated SPC. In this study, a soybean collection of 192 accessions from a wide geographic range was used to identify genomic regions associated with soybean protein content (PC) and SPC using an association mapping approach employing 1,536 SNP makers and 232 haplotypes. The diverse panel revealed a large genetic variation in PC and SPC. Association mapping was performed using three methods to minimize false-positive associations. This resulted in 4/8 SNPs and 3/6 haplotypes that were significantly associated with soybean PC/SPC in two or more environments based on the mixed model. An SNP that was highly significantly associated with PC, BARC-021267-04016, was localized 0.28 cM away from a published glycinin gene, G7, and was detected across all four environments. Four major SPC-specific loci, BARC-029149-06088, BARC-018023-02499, BARC-041663-08059 and haplotype 15 (hp15), were stably identified on chromosomes five and eight and explained 8.5-15.1 % of the phenotypic variation. Moreover, a glutelin type-B 2-like gene was identified on chromosome eight and may be related to soybean protein solubility. These markers, which are located in previously reported QTL, reconfirmed previous findings and may be important targets for the identification of protein-related genes. These novel SNPs and haplotypes are important for further understanding the genetic basis of PC and SPC. In addition, by comparing the correlation and genetic loci between PC and SPC, we provide new insights into why certain soybean varieties have a high protein content but a low SPC.


Asunto(s)
Glycine max/genética , Polimorfismo de Nucleótido Simple , Proteínas de Soja/química , Mapeo Cromosómico , Cromosomas de las Plantas , Estudios de Asociación Genética , Genotipo , Haplotipos , Modelos Genéticos , Fenotipo , Solubilidad , Glycine max/química
20.
Breed Sci ; 63(5): 441-9, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24757383

RESUMEN

Wild soybean, the progenitor of cultivated soybean, is an important gene pool for ongoing soybean breeding efforts. To identify yield-enhancing quantitative trait locus (QTL) or gene from wild soybean, 113 wild soybeans accessions were phenotyped for five yield-related traits and genotyped with 85 simple sequence repeat (SSR) markers to conduct association mapping. A total of 892 alleles were detected for the 85 SSR markers, with an average 10.49 alleles; the corresponding PIC values ranged from 0.07 to 0.92, with an average 0.73. The genetic diversity of each SSR marker ranged from 0.07 to 0.93, with an average 0.75. A total of 18 SSR markers were identified for the five traits. Two SSR markers, sct_010 and satt316, which are associated with the yield per plant were stably expressed over two years at two experimental locations. Our results suggested that association mapping can be an effective approach for identifying QTL from wild soybean.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA