Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Opt Express ; 28(6): 7906-7916, 2020 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-32225425

RESUMEN

Whispering-gallery-mode optical microresonators have found impactful applications in various areas due to their remarkable properties such as ultra-high quality factor (Q-factor), small mode volume, and strong evanescent field. Among these applications, controllable tuning of the optical Q-factor is vital for on-chip optical modulation and various opto-electronic devices. Here, we report an experimental demonstration with a hybrid structure formed by an ultra-high-Q microtoroid cavity and a graphene monolayer. Thanks to the strong interaction of the evanescent wave with the graphene, the structure allows the Q-factor to be controllably varied in the range of 3.9 × 105 ∼ 6.2 × 107 by engineering optical absorption via changing the gap distance in between. At the same time, a resonant wavelength shift of 32 pm was also observed. Besides, the scheme enables us to approach the critical coupling with a coupling depth of 99.6%. As potential applications in integrated opto-electronic devices, we further use the system to realize a tunable optical filter with tunable bandwidth from 116.5 MHz to 2.2 GHz as well as an optical switch with a maximal extinction ratio of 31 dB and response time of 21 ms.

2.
Opt Express ; 20(16): 18319-25, 2012 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-23038382

RESUMEN

We experimentally demonstrate an all-optical analog to electromagnetically induced transparency (EIT) on chip using coupled high-Q silica microtoroid cavities with Q-factors above 10(6). The transmission spectrum of the all-optical analog to EIT is precisely controlled by tuning the distance between the two microtoroids, as well as the detunings of the resonance frequencies of the two cavities.

3.
Nat Commun ; 7: 13657, 2016 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-27886189

RESUMEN

Despite being fundamentally challenging in integrated (nano)photonics, achieving chip-based light non-reciprocity becomes increasingly urgent in signal processing and optical communications. Because of material incompatibilities in conventional approaches based on the Faraday effect, alternative solutions have resorted to nonlinear processes to obtain one-way transmission. However, dynamic reciprocity in a recent theoretical analysis has pinned down the functionalities of these nonlinear isolators. To bypass such dynamic reciprocity, we here demonstrate an optical isolator on a silicon chip enforced by phase-matched parametric amplification in four-wave mixing. Using a high-Q microtoroid resonator, we realize highly non-reciprocal transport at the 1,550 nm wavelength when waves are injected from both directions in two different operating configurations. Our design, compatible with current complementary metal-oxide-semiconductor (CMOS) techniques, yields convincing isolation performance with sufficiently low insertion loss for a wide range of input power levels. Moreover, our work demonstrates the possibility of designing chip-based magnetic-free optical isolators for information processing and laser protection.

4.
Sci Rep ; 6: 38972, 2016 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-27958356

RESUMEN

Optically nonreciprocal devices provide critical functionalities such as light isolation and circulation in integrated photonic circuits for optical communications and information processing, but have been difficult to achieve. By exploring gain-saturation nonlinearity, we demonstrate on-chip optical nonreciprocity with excellent isolation performance within telecommunication wavelengths using only one toroid microcavity. Compatible with current complementary metal-oxide-semiconductor process, our compact and simple scheme works for a very wide range of input power levels from ~10 microwatts down to ~10 nanowatts, and exhibits remarkable properties of one-way light transport with sufficiently low insertion loss. These superior features make our device become a promising critical building block indispensable for future integrated nanophotonic networks.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA