Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Technol ; 57(1): 561-569, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36443945

RESUMEN

Fluorene-9-bisphenol (BHPF), a bisphenol A (BPA) substitute, has been increasingly used as a material in syntheses of polymers that are widely used in road markings, artificial tracks, coating floors, building paints, etc., increasing the likelihood of BHPF contamination in the aquatic environment due to its release from the products. However, to date, it is unknown whether it may have actual impacts on fish in real environments. In this study, a 105-day exposure experiment of BHPF at various concentrations (0.01, 0.1, 1, and 10 µg/L) on Chinese medaka (Oryzias sinensis) was performed under laboratory conditions and found decreased fecundity, such as lower egg qualities and quantities, retarded oogenesis, and atretic follicles in the fish and deformed eyes and bodies in its F1 generation. Toxico-transcriptome analyses showed that estrogen-responsive genes were significantly suppressed by BHPF, indicating that antagonist properties of BHPF on estrogen receptors might be causes for the decreased fecundity. Field investigations (Beijing) demonstrated that BHPF was detectable in 60% surface waters, with a mean concentration of 10.49 ± 6.33 ng/L, by gas chromatography-mass spectrometry, and similar effects in wild Chinese medaka were also observed, some of which the parameters were found to be obviously correlated with the BHPF levels in corresponding waters.


Asunto(s)
Oryzias , Contaminantes Químicos del Agua , Animales , Fluorenos/toxicidad , Fluorenos/química , Reproducción , Contaminantes Químicos del Agua/toxicidad
2.
Ecotoxicol Environ Saf ; 246: 114202, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36270036

RESUMEN

Many phenolic compounds have been found to have endocrine disrupting activities, but their arylamine analogs, the phenolic hydroxyl groups substituted by aniline amino groups, have rarely been reported. 4,4'-(9-Fluorenylidene)dianiline (BAFL) is an arylamine analog of fluorene-9-bisphenol (BHPF) and BHPF has been reported to be a strong antiestrogen which could cause endometrial atrophy, ovarian damage and adverse pregnancy outcomes in animals. BAFL has been widely used as material to synthetize polymers, such as polyimides, polyamide, and polyamine, for various uses since the 1970s. Here, we assessed the antiestrogenicity of BAFL using a variety of methods and looked into its impacts on the development of females in CD-1 mice. With the aid of a yeast estrogen screen assay, we found BAFL possessed obviously antiestrogenic activity (IC50 = 8.15 × 10-6 M), which close to that of tamoxifen and BHPF. Using a 10-d mouse uterotrophic assay, we found that BAFL obviously decreased uterine weight in a dose-dependent way. Histological analyses of mouse uteri revealed that BAFL induced marked endometrial atrophy and inhibited the uterine development. Immunohistochemical analyses showed that Sprr2d, an estrogen-responsive gene encoding protein, was mainly expressed in endometrial epithelial cells and BAFL decreased the areas and levels of Sprr2d staining in mouse uteri. It was clear from uterine transcriptome investigations that BAFL significantly downregulated the expressions of multiple genes responding to estrogen. Molecular docking showed that BAFL could effectively occupy the antagonist-binding pocket of hERα, and one of the amino groups of BAFL formed hydrogen bonds with the side chains of Arg394 and Glu353 in the receptor. These results indicated that BAFL exhibited clearly antiestrogenic characteristics and could interfere with normal female development in mice, which should be avoided using in commodities that come into direct contact with humans. Moreover, this study indicated that the arylamine analogs of phenolic endocrine disrupting chemicals might also have endocrine disrupting activities.


Asunto(s)
Antagonistas de Estrógenos , Estrógenos , Humanos , Embarazo , Ratones , Femenino , Animales , Simulación del Acoplamiento Molecular , Antagonistas de Estrógenos/química , Estrógenos/toxicidad , Atrofia
3.
Ecotoxicol Environ Saf ; 242: 113906, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35878500

RESUMEN

Identifying chemicals with endocrine disrupting properties linked to disease outcomes is a key concern, as stated in the WHO-UNEP 2012 report on endocrine-disrupting chemicals. The chemical 9,9-bis[4-(2-hydroxyethoxy)phenyl]fluorene (BPEF) is widely and increasingly applied in synthesizing fluorene-based cardo polymers with superior optical, thermal and mechanical properties for various uses. However, little toxicological information is available regarding its safety. Here, we studied the endocrine disrupting property of BPEF by multiple toxicological tools and investigated its effects on female development in adolescent mice. Using the yeast two-hybrid bioassay, BPEF showed strong antiestrogenicity which was similar to that of tamoxifen, an effective antiestrogenic drug. In adolescent CD-1 mice, BPEF significantly decreased the uterine weight at relatively low doses and induced marked endometrial atrophy. Immunohistochemical staining and transcriptome analyses of the mice uteri revealed that BPEF could repressed the expressions of estrogen-responsive genes. Molecular simulation indicated that BPEF could be docked into the antagonist pocket of human estrogen receptor α, and the formation of hydrogen bonds and hydrophobic interactions between BPEF and the active site of receptor maintained their strong binding. All of the data demonstrated that BPEF possessed strong antiestrogenic property and might disrupt female development, suggesting it should be avoided in making products that might directly expose to people, particularly immature women.


Asunto(s)
Disruptores Endocrinos , Antagonistas de Estrógenos , Adolescente , Animales , Disruptores Endocrinos/análisis , Antagonistas de Estrógenos/toxicidad , Estrógenos , Femenino , Fluorenos/toxicidad , Humanos , Ratones , Tamoxifeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA