Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Chem Biol ; 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38528120

RESUMEN

Exportin-1 (XPO1/CRM1) plays a central role in the nuclear-to-cytoplasmic transport of hundreds of proteins and contributes to other cellular processes, such as centrosome duplication. Small molecules targeting XPO1 induce cytotoxicity, and selinexor was approved by the Food and Drug Administration in 2019 as a cancer chemotherapy for relapsed multiple myeloma. Here, we describe a cell-type-dependent chromatin-binding function for XPO1 that is essential for the chromatin occupancy of NFAT transcription factors and thus the appropriate activation of T cells. Additionally, we establish a class of XPO1-targeting small molecules capable of disrupting the chromatin binding of XPO1 without perturbing nuclear export or inducing cytotoxicity. This work defines a broad transcription regulatory role for XPO1 that is essential for T cell activation as well as a new class of XPO1 modulators to enable therapeutic targeting of XPO1 beyond oncology including in T cell-driven autoimmune disorders.

2.
J Natl Compr Canc Netw ; 21(5): 487-495.e15, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37156484

RESUMEN

BACKGROUND: This study sought to evaluate the current services and delivery models of adolescent and young adult oncology (AYAO)-specific programs at NCI-designated Cancer Centers (NCI-CCs). PATIENTS AND METHODS: NCI, academic, and community cancer centers were electronically sent surveys from October to December 2020 and administered via REDCap. RESULTS: Survey responses were received from 50 of 64 (78%) NCI-CCs, primarily completed by pediatric oncologists (53%), adult oncologists (11%), and social workers (11%). Half (51%) reported an existing AYAO program, with most (66%) started within the past 5 years. Although most programs combined medical and pediatric oncology (59%), 24% were embedded within pediatrics alone. Most programs saw patients aged 15 (55%) to 39 years (66%) mainly via outpatient clinic consultation (93%). Most centers reported access to a range of medical oncology and supportive services, but dedicated services specifically for adolescent and young adults (AYAs) were available at a much lower extent, such as social work (98% vs 58%) and psychology (95% vs 54%). Although fertility preservation was offered by all programs (100%), only two-thirds of NCI centers (64%) reported providing sexual health services to AYAs. Most NCI-CCs (98%) were affiliated with a research consortium, and a lesser extent (73%) reported collaboration between adult and pediatric researchers. Nearly two-thirds (60%) reported that AYA oncology care was important/very important to their respective institution and reported providing good/excellent care to AYAs with cancer (59%), but to a lesser extent reported good/excellent research (36%), sexual health (23%), and education of staff (21%). CONCLUSIONS: Results of this first-ever national survey to assess AYAO programs showed that only half of NCI-CCs report having a dedicated AYAO program, and that areas of improvement include staff education, research, and sexual health services for patients.


Asunto(s)
Neoplasias , Humanos , Adulto Joven , Adolescente , Niño , Neoplasias/epidemiología , Neoplasias/terapia , Neoplasias/psicología , Atención a la Salud , Oncología Médica , Encuestas y Cuestionarios , Instituciones Oncológicas
3.
J Natl Compr Canc Netw ; 21(8): 851-880, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37549914

RESUMEN

This selection from the NCCN Guidelines for Adolescent and Young Adult (AYA) Oncology focuses on considerations for the comprehensive care of AYA patients with cancer. Compared with older adults with cancer, AYA patients have unique needs regarding treatment, fertility counseling, psychosocial and behavioral issues, and supportive care services. The complete version of the NCCN Guidelines for Adolescent and Young Adult (AYA) Oncology addresses additional aspects of caring for AYA patients, including risk factors, screening, diagnosis, and survivorship.


Asunto(s)
Oncología Médica , Neoplasias , Humanos , Adolescente , Adulto Joven , Anciano , Neoplasias/diagnóstico , Neoplasias/terapia , Neoplasias/psicología , Consejo , Supervivencia , Factores de Riesgo
4.
Int J Mol Sci ; 23(9)2022 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-35563626

RESUMEN

Vascular endothelial growth factor (VEGF) has important effects on hematopoietic and immune cells. A link between VEGF expression, tumor progression, and metastasis has been established in various solid tumors; however, the impact of VEGF expression by hematopoietic neoplasias remains unclear. Here, we investigated the role of VEGF in plasma cell neoplasia. Overexpression of VEGF in MOPC 315 tumor cells (MOPCSVm) had no effect on their growth in vitro. However, constitutive ectopic expression of VEGF dramatically reduced tumorigenicity of MOPC 315 when implanted subcutaneously into BALB/c mice. Mice implanted with MOPCSVm effectively rejected tumor grafts and showed strong cytotoxic T lymphocyte (CTL) activity against parental MOPC 315 cells. MOPCSVm implants were not rejected in nude mice, suggesting the process is T-cell-dependent. Adoptive transfer of splenocytes from recipients inoculated with MOPCSVm cells conferred immunity to naïve BALB/c mice, and mice surviving inoculation with MOPCSVm rejected the parental MOPC 315 tumor cells following a second inoculation. Immunohistochemical analysis showed that MOPCSVm induced a massive infiltration of CD3+ cells and MHC class II+ cells in vivo. In addition, exogenous VEGF induced the expression of CCR3 in T cells in vitro. Together, these data are the first to demonstrate that overexpression of VEGF in plasmacytoma inhibits tumor growth and enhances T-cell-mediated antitumor immune response.


Asunto(s)
Plasmacitoma , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Plasmacitoma/genética , Plasmacitoma/patología , Linfocitos T Citotóxicos , Factor A de Crecimiento Endotelial Vascular/genética
5.
Pediatr Blood Cancer ; 68(9): e29188, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34137164

RESUMEN

Osteosarcoma is the most common bone tumor in children and young adults. Metastatic and relapsed disease confer poor prognosis, and there have been no improvements in outcomes for several decades. The disease's biological complexity, lack of drugs developed specifically for osteosarcoma, imperfect preclinical models, and limits of existing clinical trial designs have contributed to lack of progress. The Children's Oncology Group Bone Tumor Committee established the New Agents for Osteosarcoma Task Force to identify and prioritize agents for inclusion in clinical trials. The group identified multitargeted tyrosine kinase inhibitors, immunotherapies targeting B7-H3, CD47-SIRPα inhibitors, telaglenastat, and epigenetic modifiers as the top agents of interest. Only multitargeted tyrosine kinase inhibitors met all criteria for frontline evaluation and have already been incorporated into an upcoming phase III study concept. The task force will continue to reassess identified agents of interest as new data become available and evaluate novel agents using this method.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Neoplasias Óseas/tratamiento farmacológico , Niño , Ensayos Clínicos como Asunto , Epigénesis Genética , Humanos , Inmunoterapia , Osteosarcoma/tratamiento farmacológico , Inhibidores de Proteínas Quinasas , Adulto Joven
6.
Pediatr Blood Cancer ; 67(2): e28075, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31736241

RESUMEN

BACKGROUND: This study aimed to investigate the relationship between CD4+ regulatory T cells (Tregs) and innate lymphoid cells (ILCs) in children with primary immune thrombocytopenia (ITP) undergoing high-dose intravenous immunoglobulin (IVIG) therapy. METHODS: We enrolled a cohort of 30 children with newly diagnosed ITP and 30 healthy controls and collected blood samples for levels of Tregs, ILCs, relevant cytokines, and Treg suppression assay at the diagnosis, two days, four weeks, and one year (only platelet count) after high-dose IVIG treatment. IVIG partial responders was defined by a platelet count less than 100 × 109 /L at 12 months after IVIG treatment. RESULTS: Children with newly diagnosed ITP exhibited elevated levels of ILC1, ILC2, ILC3, Th17, myeloid dendritic cells (DCs), plasmacytoid DCs, and serum IFN-γ and IL-17A levels, accompanied by a decrease in IL-10-producing Tregs. High-dose IVIG therapy reversed these aberrations. Platelet counts positively correlated with Tregs (rho = 0.72) and negatively correlated with both ILC1 (rho = -0.49) and ILC3 (rho = -0.60) (P < 0.05). Significantly lower Tregs and higher ILC1, ILC3, DCs, and serum IL-17A levels were noted in the partial responders (n = 8) versus responders (n = 22; P < 0.05). We found that Tregs suppressed proliferation of ILCs and CD4+ T cells in CD25-depleted peripheral PBMCs and enhanced the apoptosis of CD4+ CD45RO+ T cells in vitro following IVIG therapy. CONCLUSIONS: Effective high-dose IVIG therapy for children with newly diagnosed ITP appears to result in the induction of Tregs, which suppresses ILC proliferation in vitro and is associated with platelet response.


Asunto(s)
Inmunidad Innata/inmunología , Inmunoglobulinas Intravenosas/administración & dosificación , Linfocitos/inmunología , Púrpura Trombocitopénica Idiopática/inmunología , Linfocitos T Reguladores/inmunología , Adolescente , Estudios de Casos y Controles , Niño , Preescolar , Citocinas/metabolismo , Femenino , Estudios de Seguimiento , Humanos , Inmunidad Innata/efectos de los fármacos , Linfocitos/efectos de los fármacos , Masculino , Pronóstico , Estudios Prospectivos , Púrpura Trombocitopénica Idiopática/tratamiento farmacológico , Púrpura Trombocitopénica Idiopática/patología , Linfocitos T Reguladores/efectos de los fármacos
7.
Int J Mol Sci ; 21(8)2020 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-32340123

RESUMEN

(1) Background: Colorectal cancer (CRC) is among the best examples of the relationship between inflammation and increased cancer risk. (2) Methods: To examine the effects of spontaneous low-grade chronic inflammation on the pathogenesis of CRC, we developed a new murine model of colitis-associated cancer (CAC) by crossing Mucin 2 mutated mice (Winnie) with ApcMin/+ mice. (3) Results: The resulting Winnie-ApcMin/+ model combines an inflammatory background with a genetic predisposition to small intestinal polyposis. Winnie-ApcMin/+ mice show an early occurrence of inflammatory signs and dysplastic lesions in the distal colon with a specific molecular signature. (4) Conclusion: The Winnie-ApcMin/+ model is a perfect model to demonstrate that chronic inflammation represents a crucial risk factor for the onset and progression of tumoral lesions in individuals genetically predisposed to CRC.


Asunto(s)
Neoplasias Asociadas a Colitis/etiología , Susceptibilidad a Enfermedades , Genes APC , Animales , Apoptosis/genética , Biopsia , Proliferación Celular , Citoesqueleto , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Predisposición Genética a la Enfermedad , Inmunohistoquímica , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Ratones , Clasificación del Tumor
8.
Immunol Cell Biol ; 97(9): 787-798, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31127976

RESUMEN

Regulatory T cells (Tregs) continuously suppress autoreactive immune responses within tissues to prevent autoimmunity, yet the recirculatory behavior of Tregs between and within tissues enabling the maintenance of peripheral tolerance remains incompletely defined. Here, we quantified homing efficiency to and the dwell time of Tregs within secondary lymphoid organs (SLOs) and used intravital two-photon microscopy to measure Treg surveillance behavior of dendritic cells. Tregs homed substantially less efficiently to SLOs compared with conventional CD4+ T cells (Tconvs), despite similar expression of homing receptors. Tregs remained on average 2-3 times longer within the LN than Tconvs before exiting, and retained Tregs differed from recirculating Tregs in phenotype, motility and interaction duration with dendritic cells. Taken together, these data revealed fundamental differences in Treg versus conventional T cell in vivo recirculation and migration behaviors, identified a Treg population with prolonged LN dwell time, and provided quantitative insight into their spatiotemporal behavior within LNs.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Movimiento Celular , Ganglios Linfáticos/inmunología , Linfocitos T Reguladores/inmunología , Animales , Células Dendríticas/inmunología , Ratones Endogámicos C57BL , Factores de Tiempo
9.
Blood ; 129(2): 246-256, 2017 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-28064242

RESUMEN

Molecular intermediates in T-cell activation pathways are crucial targets for the therapy and prevention of graft-versus-host disease (GVHD) following allogeneic hematopoietic cell transplantation (allo-HCT). We recently identified an essential role for cyclin-dependent kinase 5 (Cdk5) in T-cell activation and effector function, but the contribution of Cdk5 activity to the development of GVHD has not been explored. Using an established, preclinical, murine, GVHD model, we reveal that Cdk5 activity is increased in key target organs early after allo-HCT. We then generated chimeric mice (Cdk5+/+C or Cdk5-/-C) using hematopoietic progenitors from either embryonic day 16.5 Cdk5+/+ or Cdk5-/- embryos to enable analyses of the role of Cdk5 in GVHD, as germ line Cdk5 gene deletion is embryonically lethal. The immunophenotype of adult Cdk5-/-C mice is identical to control Cdk5+/+C mice. However, transplantation of donor Cdk5-/-C bone marrow and T cells dramatically reduced the severity of systemic and target organ GVHD. This phenotype is attributed to decreased T-cell migration to secondary lymphoid organs (SLOs), reduced in vivo proliferation within these organs, and fewer cytokine-producing donor T cells during GVHD development. Moreover, these defects in Cdk5-/- T-cell function are associated with altered CCR7 signaling following ligation by CCL19, a receptor:ligand interaction critical for T-cell migration into SLOs. Although Cdk5 activity in donor T cells contributed to graft-versus-tumor effects, pharmacologic inhibition of Cdk5 preserved leukemia-free survival. Collectively, our data implicate Cdk5 in allogeneic T-cell responses after HCT and as an important new target for therapeutic intervention.


Asunto(s)
Quinasa 5 Dependiente de la Ciclina/inmunología , Enfermedad Injerto contra Huésped/inmunología , Trasplante de Células Madre Hematopoyéticas , Activación de Linfocitos/inmunología , Linfocitos T/inmunología , Aloinjertos , Animales , Western Blotting , Quimiotaxis de Leucocito/inmunología , Modelos Animales de Enfermedad , Femenino , Leucemia/inmunología , Leucemia/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Trasplante Homólogo
11.
J Biol Chem ; 292(35): 14649-14658, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28726636

RESUMEN

Pyroptosis is a form of cell death important in defenses against pathogens that can also result in a potent and sometimes pathological inflammatory response. During pyroptosis, GSDMD (gasdermin D), the pore-forming effector protein, is cleaved, forms oligomers, and inserts into the membranes of the cell, resulting in rapid cell death. However, the potent cell death induction caused by GSDMD has complicated our ability to understand the biology of this protein. Studies aimed at visualizing GSDMD have relied on expression of GSDMD fragments in epithelial cell lines that naturally lack GSDMD expression and also lack the proteases necessary to cleave GSDMD. In this work, we performed mutagenesis and molecular modeling to strategically place tags and fluorescent proteins within GSDMD that support native pyroptosis and facilitate live-cell imaging of pyroptotic cell death. Here, we demonstrate that these fusion proteins are cleaved by caspases-1 and -11 at Asp-276. Mutations that disrupted the predicted p30-p20 autoinhibitory interface resulted in GSDMD aggregation, supporting the oligomerizing activity of these mutations. Furthermore, we show that these novel GSDMD fusions execute inflammasome-dependent pyroptotic cell death in response to multiple stimuli and allow for visualization of the morphological changes associated with pyroptotic cell death in real time. This work therefore provides new tools that not only expand the molecular understanding of pyroptosis but also enable its direct visualization.


Asunto(s)
Caspasa 1/metabolismo , Caspasas Iniciadoras/metabolismo , Caspasas/metabolismo , Inflamasomas/metabolismo , Macrófagos/citología , Modelos Biológicos , Proteínas de Neoplasias/metabolismo , Piroptosis , Sustitución de Aminoácidos , Animales , Línea Celular Transformada , Células HEK293 , Humanos , Inflamasomas/inmunología , Péptidos y Proteínas de Señalización Intracelular , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Microscopía Fluorescente , Microscopía por Video , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Proteínas de Unión a Fosfato , Mutación Puntual , Multimerización de Proteína , Transporte de Proteínas , Proteolisis , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo
12.
J Immunol ; 196(9): 3653-64, 2016 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-26994221

RESUMEN

In inflamed lymph nodes, Ag-specific CD4(+) and CD8(+) T cells encounter Ag-bearing dendritic cells and, together, this complex enhances the release of CCL3 and CCL4, which facilitate additional interaction with naive CD8(+) T cells. Although blocking CCL3 and CCL4 has no effect on primary CD8(+) T cell responses, it dramatically impairs the development of memory CD8(+) T cells upon Ag rechallenge. Despite the absence of detectable surface CCR5 expression on circulating native CD8(+) T cells, these data imply that naive CD8(+) T cells are capable of expressing surface CCR5 prior to cognate Ag-induced TCR signaling in inflamed lymph nodes; however, the molecular mechanisms have not been characterized to date. In this study, we show that CCR5, the receptor for CCL3 and CCL4, can be transiently upregulated on a subset of naive CD8(+) T cells and that this upregulation is dependent on direct contact with the high endothelial venule in inflamed lymph node. Binding of CD62L and CD11a on T cells to their ligands CD34 and CD54 on the high endothelial venule can be enhanced during inflammation. This enhanced binding and subsequent signaling promote the translocation of CCR5 molecules from intracellular vesicles to the surface of the CD8(+) T cell. The upregulation of CCR5 on the surface of the CD8(+) T cells increases the number of contacts with Ag-bearing dendritic cells, which ultimately results in increased CD8(+) T cell response to Ag rechallenge.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Memoria Inmunológica , Ganglios Linfáticos/inmunología , Receptores CCR5/metabolismo , Linfocitos T Colaboradores-Inductores/inmunología , Animales , Presentación de Antígeno , Antígenos CD34/inmunología , Antígenos CD34/metabolismo , Antígeno CD11a/inmunología , Antígeno CD11a/metabolismo , Células Dendríticas/inmunología , Inflamación , Molécula 1 de Adhesión Intercelular/inmunología , Molécula 1 de Adhesión Intercelular/metabolismo , Selectina L/inmunología , Selectina L/metabolismo , Ganglios Linfáticos/citología , Ganglios Linfáticos/patología , Activación de Linfocitos , Ratones , Receptores CCR5/genética , Linfocitos T Colaboradores-Inductores/metabolismo
13.
Haematologica ; 102(10): 1785-1795, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28729299

RESUMEN

Despite use of newer approaches, some patients being considered for autologous hematopoietic cell transplantation (HCT) may only mobilize limited numbers of hematopoietic progenitor cells (HPCs) into blood, precluding use of the procedure, or being placed at increased risk of complications due to slow hematopoietic reconstitution. Developing more efficacious HPC mobilization regimens and strategies may enhance the mobilization process and improve patient outcome. Although Notch signaling is not essential for homeostasis of adult hematopoietic stem cells (HSCs), Notch-ligand adhesive interaction maintains HSC quiescence and niche retention. Using Notch receptor blocking antibodies, we report that Notch2 blockade, but not Notch1 blockade, sensitizes hematopoietic stem cells and progenitors (HSPCs) to mobilization stimuli and leads to enhanced egress from marrow to the periphery. Notch2 blockade leads to transient myeloid progenitor expansion without affecting HSC homeostasis and self-renewal. We show that transient Notch2 blockade or Notch2-loss in mice lacking Notch2 receptor lead to decreased CXCR4 expression by HSC but increased cell cycling with CXCR4 transcription being directly regulated by the Notch transcriptional protein RBPJ. In addition, we found that Notch2-blocked or Notch2-deficient marrow HSPCs show an increased homing to the marrow, while mobilized Notch2-blocked, but not Notch2-deficient stem cells and progenitors, displayed a competitive repopulating advantage and enhanced hematopoietic reconstitution. These findings suggest that blocking Notch2 combined with the current clinical regimen may further enhance HPC mobilization and improve engraftment during HCT.


Asunto(s)
Antineoplásicos/farmacología , Movilización de Célula Madre Hematopoyética , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/metabolismo , Receptor Notch2/antagonistas & inhibidores , Animales , Antineoplásicos/uso terapéutico , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/metabolismo , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Movimiento Celular/efectos de los fármacos , Autorrenovación de las Células/efectos de los fármacos , Autorrenovación de las Células/genética , Regulación de la Expresión Génica/efectos de los fármacos , Movilización de Célula Madre Hematopoyética/métodos , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Trasplante de Células Madre Hematopoyéticas/métodos , Células Madre Hematopoyéticas/citología , Humanos , Ratones , Ratones Transgénicos , Receptor Notch2/deficiencia , Receptor Notch2/metabolismo , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Transducción de Señal/efectos de los fármacos
14.
Eur J Immunol ; 45(9): 2638-49, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26096294

RESUMEN

Currently little is known as to how nutritionally derived compounds may affect dendritic cell (DC) maturation and potentially prevent inappropriate inflammatory responses that are characteristic of chronic inflammatory syndromes. Previous observations have demonstrated that two polyphenols quercetin and piperine delivered through reconstituted oil bodies (ROBs-QP) can influence DC maturation in response to LPS leading to a modulated inflammatory response. In the present study, we examined the molecular effects of ROBs-QP exposure on DC differentiation in mice and identified a unique molecular signature in response to LPS administration that potentially modulates DC maturation and activity in inflammatory conditions. Following LPS administration, ROBs-QP-exposed DCs expressed an altered molecular profile as compared with control DCs, including cytokine and chemokine production, chemokine receptor repertoire, and antigen presentation ability. In vivo ROBs-QP administration suppresses antigen-specific T-cell division in the draining lymph nodes resulting from a reduced ability to create stable immunological synapse. Our data demonstrate that polyphenols exposure can drive DCs toward a new anti-inflammatory molecular profile capable of dampening the inflammatory response, highlighting their potential as complementary nutritional approaches in the treatment of chronic inflammatory syndromes.


Asunto(s)
Alcaloides/farmacología , Benzodioxoles/farmacología , Proliferación Celular/efectos de los fármacos , Células Dendríticas/efectos de los fármacos , Piperidinas/farmacología , Polifenoles/farmacología , Alcamidas Poliinsaturadas/farmacología , Quercetina/farmacología , Linfocitos T/efectos de los fármacos , Animales , Presentación de Antígeno/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Citocinas/genética , Citocinas/inmunología , Células Dendríticas/inmunología , Células Dendríticas/patología , Expresión Génica , Inflamación/inducido químicamente , Inflamación/genética , Inflamación/inmunología , Inflamación/patología , Lipopolisacáridos , Activación de Linfocitos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Cultivo Primario de Células , Receptores de Quimiocina/genética , Receptores de Quimiocina/inmunología , Linfocitos T/inmunología , Linfocitos T/patología
15.
Stem Cells ; 33(7): 2280-93, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25851125

RESUMEN

Notch is long recognized as a signaling molecule important for stem cell self-renewal and fate determination. Here, we reveal a novel adhesive role of Notch-ligand engagement in hematopoietic stem and progenitor cells (HSPCs). Using mice with conditional loss of O-fucosylglycans on Notch EGF-like repeats important for the binding of Notch ligands, we report that HSPCs with faulty ligand binding ability display enhanced cycling accompanied by increased egress from the marrow, a phenotype mainly attributed to their reduced adhesion to Notch ligand-expressing stromal cells and osteoblastic cells and their altered occupation in osteoblastic niches. Adhesion to Notch ligand-bearing osteoblastic or stromal cells inhibits wild type but not O-fucosylglycan-deficient HSPC cycling, independent of RBP-JK -mediated canonical Notch signaling. Furthermore, Notch-ligand neutralizing antibodies induce RBP-JK -independent HSPC egress and enhanced HSPC mobilization. We, therefore, conclude that Notch receptor-ligand engagement controls HSPC quiescence and retention in the marrow niche that is dependent on O-fucosylglycans on Notch.


Asunto(s)
Células Madre Hematopoyéticas/metabolismo , Receptores Notch/metabolismo , Nicho de Células Madre/genética , Células del Estroma/metabolismo , Animales , Humanos , Ratones , Transducción de Señal
16.
Proc Natl Acad Sci U S A ; 109(44): 18036-41, 2012 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-23071319

RESUMEN

Naïve T cells continually recirculate between blood and secondary lymphoid organs, scanning dendritic cells (DC) for foreign antigen. Despite its importance for understanding how adaptive immune responses are efficiently initiated from rare precursors, a detailed quantitative analysis of this fundamental process has not been reported. Here we measure lymph node (LN) entry, transit, and exit rates for naïve CD4(+) and CD8(+) T cells, then use intravital imaging and mathematical modeling to relate cell-cell interaction dynamics to population behavior. Our studies reveal marked differences between CD4(+) vs. CD8(+) T cells. CD4(+) T cells recirculate more rapidly, homing to LNs more efficiently, traversing LNs twice as quickly, and spending ∼1/3 of their transit time interacting with MHCII on DC. In contrast, adoptively transferred CD8(+) T cells enter and leave the LN more slowly, with a transit time unaffected by the absence of MHCI molecules on host cells. Together, these data reveal an unexpectedly asymmetric role for MHC interactions in controlling CD4(+) vs. CD8(+) T lymphocyte recirculation, as well as distinct contributions of T cell receptor (TCR)-independent factors to the LN transit time, exposing the divergent surveillance strategies used by the two lymphocyte populations in scanning for foreign antigen.


Asunto(s)
Antígenos/inmunología , Linfocitos T CD4-Positivos/citología , Linfocitos T CD8-positivos/citología , Ganglios Linfáticos/citología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Humanos , Ganglios Linfáticos/inmunología
17.
J Clin Invest ; 134(5)2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38194275

RESUMEN

Neutrophil extracellular traps (NETs), a web-like structure of cytosolic and granule proteins assembled on decondensed chromatin, kill pathogens and cause tissue damage in diseases. Whether NETs can kill cancer cells is unexplored. Here, we report that a combination of glutaminase inhibitor CB-839 and 5-FU inhibited the growth of PIK3CA-mutant colorectal cancers (CRCs) in xenograft, syngeneic, and genetically engineered mouse models in part through NETs. Disruption of NETs by either DNase I treatment or depletion of neutrophils in CRCs attenuated the efficacy of the drug combination. Moreover, NETs were present in tumor biopsies from patients treated with the drug combination in a phase II clinical trial. Increased NET levels in tumors were associated with longer progression-free survival. Mechanistically, the drug combination induced the expression of IL-8 preferentially in PIK3CA-mutant CRCs to attract neutrophils into the tumors. Further, the drug combination increased the levels of ROS in neutrophils, thereby inducing NETs. Cathepsin G (CTSG), a serine protease localized in NETs, entered CRC cells through the RAGE cell surface protein. The internalized CTSG cleaved 14-3-3 proteins, released BAX, and triggered apoptosis in CRC cells. Thus, our studies illuminate a previously unrecognized mechanism by which chemotherapy-induced NETs kill cancer cells.


Asunto(s)
Neoplasias Colorrectales , Trampas Extracelulares , Humanos , Animales , Ratones , Modelos Animales de Enfermedad , Fosfatidilinositol 3-Quinasa Clase I , Combinación de Medicamentos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética
18.
Microsc Microanal ; 19(4): 778-90, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23642852

RESUMEN

Within the central nervous system (CNS), antigen-presenting cells (APCs) play a critical role in orchestrating inflammatory responses where they present CNS-derived antigens to immune cells that are recruited from the circulation to the cerebrospinal fluid, parenchyma, and perivascular space. Available data indicate that APCs do so indirectly from outside of CNS vessels without direct access to luminal contents. Here, we applied high-resolution, dynamic intravital two-photon laser scanning microscopy to directly visualize extravascular CX3CR1+ APC behavior deep within undisrupted CNS tissues in two distinct anatomical sites under three different inflammatory stimuli. Surprisingly, we observed that CNS-resident APCs dynamically extend their cellular processes across an intact vessel wall into the vascular lumen with preservation of vessel integrity. While only a small number of APCs displayed intravascular extensions in intact, noninflamed vessels in the brain and the spinal cord, the frequency of projections increased over days in an experimental autoimmune encephalomyelitis model, whereas the number of projections remained stable compared to baseline days after tissue injury such as CNS tumor infiltration and aseptic spinal cord trauma. Our observation of this unique behavior by parenchyma CX3CR1+ cells in the CNS argues for further exploration into their functional role in antigen sampling and immune cell recruitment.


Asunto(s)
Sistema Nervioso Central/inmunología , Células Dendríticas/inmunología , Receptores de Quimiocina/análisis , Animales , Receptor 1 de Quimiocinas CX3C , Modelos Animales de Enfermedad , Encefalomielitis/inmunología , Encefalomielitis/patología , Ratones , Microscopía Confocal
19.
Cancer Res Commun ; 3(5): 793-806, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37377891

RESUMEN

Natural killer (NK) cells are innate lymphocytes with cytotoxic activity. Understanding the factors regulating cytotoxicity is crucial for improving NK-cell adoptive therapies. Here, we studied a previously unknown role of p35 (CDK5R1), a coactivator of cyclin-dependent kinase 5 (CDK5) in NK-cell function. p35 expression was thought to be neuronal-specific and the majority of studies are still focused on neuronal cells. Here, we show that CDK5 and p35 are expressed in NK cells and are kinase-active. NK cells from p35 knockout mice were analyzed and showed significantly increased cytotoxicity against murine cancer cells, while they did not show any differences in cell numbers or maturation stages. We confirmed this using human NK cells transduced with p35 short hairpin RNA (shRNA), showing similar increase in cytotoxicity against human cancer cells. Overexpression of p35 in NK cells resulted in moderate decrease in cytotoxicity, while expressing a kinase-dead mutant of CDK5 displayed increased cytotoxicity. Together, these data suggest that p35 negatively regulates NK-cell cytotoxicity. Surprisingly, we found that TGFß, a known negative regulator of NK-cell cytotoxicity, induces p35 expression in NK cells. NK cells cultured with TGFß exhibit reduced cytotoxicity, while NK cells transduced with p35 shRNA or mutant CDK5 expression exhibited partial reversal of this inhibitory effect pointing to an interesting hypothesis that p35 plays an important role in TGFß-mediated NK-cell exhaustion. Significance: This study reports a role for p35 in NK-cell cytotoxicity and this might help to improve NK-cell adoptive therapy.


Asunto(s)
Proteínas del Tejido Nervioso , Factor de Crecimiento Transformador beta , Animales , Humanos , Ratones , Células Asesinas Naturales/metabolismo , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Fosfotransferasas/metabolismo , ARN Interferente Pequeño , Factor de Crecimiento Transformador beta/genética
20.
Cell Rep ; 42(5): 112531, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37200188

RESUMEN

Genomic instability can promote inflammation and tumor development. Previous research revealed an unexpected layer of regulation of genomic instability by a cytoplasmic protein MYO10; however, the underlying mechanism remained unclear. Here, we report a protein stability-mediated mitotic regulation of MYO10 in controlling genome stability. We characterized a degron motif and phosphorylation residues in the degron that mediate ß-TrCP1-dependent MYO10 degradation. The level of phosphorylated MYO10 protein transiently increases during mitosis, which is accompanied by a spatiotemporal cellular localization change first accumulating at the centrosome then at the midbody. Depletion of MYO10 or expression of MYO10 degron mutants, including those found in cancer patients, disrupts mitosis, increases genomic instability and inflammation, and promotes tumor growth; however, they also increase the sensitivity of cancer cells to Taxol. Our studies demonstrate a critical role of MYO10 in mitosis progression, through which it regulates genome stability, cancer growth, and cellular response to mitotic toxins.


Asunto(s)
Mitosis , Neoplasias , Humanos , Neoplasias/genética , Fosforilación , Inestabilidad Genómica , Inflamación/genética , Miosinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA