Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Polymers (Basel) ; 13(5)2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33669140

RESUMEN

In this paper, we propose a modified gravity method by introducing centrifugal force to promote the stacking of silica particles and the order of formed colloidal crystals. In this method, a monodispersed silica colloidal solution is filled into empty cells and placed onto rotation arms that are designed to apply an external centrifugal force to the filled silica solution. When sample fabrication is in progress, silica particles are forced toward the edges of the cells. The number of defects in the colloidal crystal decreases and the structural order increases during this process. The highest reflectivity and structural order of a sample was obtained when the external centrifugal force was 18 G. Compared to the samples prepared using the conventional stacking method, samples fabricated with centrifugal force possess higher reflectivity and structural order. The reflectivity increases from 68% to 90%, with an increase in centrifugal force from 0 to 18 G.

2.
Polymers (Basel) ; 12(4)2020 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-32260082

RESUMEN

In this paper, a wavelength tunable colloidal-crystal laser with monodispersed silica particles was demonstrated. Silica particles were synthesized through the modified Stöber process and self-assembled into the colloidal photonic-crystal structure, which was then used to form the optic cavity of a wavelength tunable laser device. Due to Bragg's diffraction of the colloidal photonic-crystal and the coffee ring effect, the forbidden energy gap of light varied with different lattice sizes at different positions of the colloidal photonic-crystal. When the pumping pulsed laser irradiated on the gain medium of the sample, the fluorescence was restricted and enhanced by the colloidal photonic-crystal. Lasing emission with a single peak occurred when the energy of the pumping laser exceeded the threshold energy. The threshold energy and the full-width at half-maximum (FWHM) of the proposed laser were 7.63 µJ/pulse and 2.88 nm, respectively. Moreover, the lasing wavelength of the colloidal photonic-crystal laser could be tuned from 604 nm to 594 nm, corresponding to the various positions in the sample due to the coffee ring effect.

3.
Polymers (Basel) ; 12(9)2020 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-32859052

RESUMEN

This work demonstrates an electrically-tunable nematic liquid crystal (NLC) diffraction grating with a periodic electrode structure, and discusses the polarization properties of its diffraction. The efficiency of the first-order diffraction can be gradually controlled by applying external electric fields cross the NLC, and the maximum diffraction efficiency of the first-order diffraction that can be obtained is around 12.5% under the applied voltage of 5.0 V. In addition to the applied electric field, the efficiency of the first-order diffraction can also vary by changing the polarized state of the incident beam. Antisymmetric polarization states with symmetrical intensities in the diffractions corresponding to the +1 and -1 order diffraction signals are also demonstrated.

4.
Polymers (Basel) ; 12(1)2020 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-31906448

RESUMEN

This paper proposes an effective approach to fabricate a blue phase liquid crystal (BPLC) microlens array based on a photoconductive film. Owing to the characteristics of photo-induced conducting polymer polyvinylcarbazole (PVK), in which conductivity depends on the irradiation of UV light, a progressive mask resulting in the variation of conductivity is adopted to produce the gradient distribution of the electric field. The reorientations of liquid crystals according to the gradient distribution of the electric field induce the variation of the refractive index. Thus, the incident light experiences the gradient distribution of the refractive index and results in the focusing phenomenon. The study investigates the dependence of lens performance on UV exposure time, the focal length of the lens, and focusing intensities with various incident polarizations. The BPLC microlens array exhibits advantages such as electrically tunability, polarization independence, and fast response time.

5.
Polymers (Basel) ; 12(12)2020 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-33322782

RESUMEN

This paper presents a focusing efficiency and focal length tunable planar Fresnel lens in reflection type based on azo-dye-doped cholesterol liquid crystal film. The Fresnel-like pattern of a pumping beam can be formed by a Sagnac interferometer. When the azo-dye molecules are irradiated by the pumping beam, the photoalignment effect will be induced in the bright (odd) zones due to the trans-cis photoisomerization of azo-dye molecules. Thus, the structures of cholesteric liquid crystals in the odd zones will reorient from the imperfectly planar textures to the perfectly planar textures. The different structures of cholesteric liquid crystals in two adjacent zones will give rise to phase difference for the reflected light and thus function as a Fresnel lens. The focusing efficiency of the proposed Fresnel lens can be controlled by the applied voltages and affected by the polarization state of incident light. Moreover, various focal lengths of the Fresnel lens can be achieved by rewriting a different center radius of the Fresnel-like pattern.

6.
Polymers (Basel) ; 11(11)2019 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-31717874

RESUMEN

In this paper, we demonstrate the potential of liquid crystals (LCs) on the applications of small, simple, and tunable optical guided channels. Experimental results show that three operation modes of beam coupling can be achieved, depending on the feature of the electrically controllable refractive index, the incident position, and the specific design of electrodes. The dependence of the beam polarization on self-focusing and coupling effect are also discussed. The electrically controllable self-focusing and beam coupling are highly potential on integrated photonic circuits.

7.
Polymers (Basel) ; 11(9)2019 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-31487836

RESUMEN

This paper presents an electrically tunable Fresnel lens in a twisted nematic liquid crystal cell fabricated by using a Sagnac interferometer. When the Fresnel-patterned green beam, formed by the Sagnac interferometer, is irradiated on the azo-dye doped liquid crystal mixture, the azo-dye molecules undergo trans-cis photoisomerization and then generate the photo-alignment effect in the bright (odd) zones. The director of the liquid crystal molecules in the odd zones reorients the direction perpendicular to the polarization direction of the linearly polarized green beam. The various structures of liquid crystals in the odd and even zones will result in a phase difference and thus, a Fresnel lens can be generated. The experimental results show that the proposed Fresnel lens has a high diffraction efficiency of 31.5% under an applied alternating-currents (AC) voltage. The focal length of the Fresnel lens can also be tuned by thermally erasing the photo-alignment effect of the azo dyes and rewriting by a different Fresnel-like pattern.

8.
Polymers (Basel) ; 11(6)2019 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-31208143

RESUMEN

This research applies the non-linear effect of azo dye-doped liquid crystal materials to develop a small, simple, and adjustable beam-splitting component with grating-like electrodes. Due to the dielectric anisotropy and optical birefringence of nematic liquid crystals, the director of the liquid crystal molecules can be reoriented by applying external electric fields, causing a periodic distribution of refractive indices and resulting in a diffraction phenomenon when a linearly polarized light is introduced. The study also discusses the difference in the refractive index (Δn), the concentration of azo dye, and the rising constant depending on the diffraction signals. The experimental results show that first-order diffraction efficiency can reach ~18% with 0.5 wt % azo dye (DR-1) doped in the nematic liquid crystals.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA