RESUMEN
Cardiac regeneration in newborn rodents depends on the ability of pre-existing cardiomyocytes to proliferate and divide. This capacity is lost within the first week of postnatal development when these cells rapidly switch from hyperplasia to hypertrophy, withdraw from the cell cycle, become binucleated, and increase in size. How these dynamic changes in cell size and nucleation impact cardiomyocyte proliferative potential is not well understood. In this study, we innovate the application of a commercially available digital holographic imaging microscope, the Holomonitor M4, to evaluate the proliferative responses of mononucleated and binucleated cardiomyocytes after CHIR99021 treatment, a model proliferative stimulus. This system enables long-term label-free quantitative tracking of primary cardiomyocyte dynamics in real-time with single-cell resolution. Our results confirm that chemical inhibition of glycogen synthase kinase 3 with CHIR99021 promotes complete cell division of both mononucleated and binucleated cardiomyocytes with high frequency. Quantitative tracking of cardiomyocyte volume dynamics during these proliferative events revealed that both mononucleated and binucleated cardiomyocytes reach a similar size-increase threshold prior to attempted cell division. Binucleated cardiomyocytes attempt to divide with lower frequency than mononucleated cardiomyocytes, which may be associated with inadequate increases in cell size. By defining the interrelationship between cardiomyocyte size, nucleation, and cell cycle control, we may better understand the cellular mechanisms that drive the loss of mammalian cardiac regenerative capacity after birth.
RESUMEN
Cardiovascular disease remains the leading cause of mortality worldwide. Cardiomyocytes are irreversibly lost due to cardiac ischemia secondary to disease. This leads to increased cardiac fibrosis, poor contractility, cardiac hypertrophy, and subsequent life-threatening heart failure. Adult mammalian hearts exhibit notoriously low regenerative potential, further compounding the calamities described above. Neonatal mammalian hearts, on the other hand, display robust regenerative capacities. Lower vertebrates such as zebrafish and salamanders retain the ability to replenish lost cardiomyocytes throughout life. It is critical to understand the varying mechanisms that are responsible for these differences in cardiac regeneration across phylogeny and ontogeny. Adult mammalian cardiomyocyte cell cycle arrest and polyploidization have been proposed as major barriers to heart regeneration. Here we review current models about why adult mammalian cardiac regenerative potential is lost including changes in environmental oxygen levels, acquisition of endothermy, complex immune system development, and possible cancer risk tradeoffs. We also discuss recent progress and highlight conflicting reports pertaining to extrinsic and intrinsic signaling pathways that control cardiomyocyte proliferation and polyploidization in growth and regeneration. Uncovering the physiological brakes of cardiac regeneration could illuminate novel molecular targets and offer promising therapeutic strategies to treat heart failure.
Asunto(s)
Insuficiencia Cardíaca , Miocitos Cardíacos , Animales , Miocitos Cardíacos/metabolismo , Pez Cebra/fisiología , Proliferación Celular , Corazón/fisiología , Puntos de Control del Ciclo Celular , Insuficiencia Cardíaca/metabolismo , MamíferosRESUMEN
During the past two decades, the field of mammalian myocardial regeneration has grown dramatically, and with this expanded interest comes increasing claims of experimental manipulations that mediate bona fide proliferation of cardiomyocytes. Too often, however, insufficient evidence or improper controls are provided to support claims that cardiomyocytes have definitively proliferated, a process that should be strictly defined as the generation of two de novo functional cardiomyocytes from one original cardiomyocyte. Throughout the literature, one finds inconsistent levels of experimental rigor applied, and frequently the specific data supplied as evidence of cardiomyocyte proliferation simply indicate cell-cycle activation or DNA synthesis, which do not necessarily lead to the generation of new cardiomyocytes. In this review, we highlight potential problems and limitations faced when characterizing cardiomyocyte proliferation in the mammalian heart, and summarize tools and experimental standards, which should be used to support claims of proliferation-based remuscularization. In the end, definitive establishment of de novo cardiomyogenesis can be difficult to prove; therefore, rigorous experimental strategies should be used for such claims.
Asunto(s)
Miocitos Cardíacos , Regeneración , Animales , Ciclo Celular , Proliferación Celular , Corazón/fisiología , Mamíferos , Miocitos Cardíacos/fisiologíaRESUMEN
With heart failure continuing to become more prevalent, investigating the mechanisms of heart injury and repair holds much incentive. In contrast with adult mammals, other organisms such as teleost fish, urodele amphibians, and even neonatal mammals are capable of robust cardiac regeneration to replenish lost or damaged myocardial tissue. Long-term high-resolution intravital imaging of the behaviors and interactions of different cardiac cell types in their native environment could yield unprecedented insights into heart regeneration and repair. However, this task remains challenging for the heart due to its rhythmic contraction and anatomical location. Here, we summarize recent advances in live imaging of heart regeneration and repair, discuss the advantages and limitations of current systems, and suggest future directions for novel imaging technology development.
Asunto(s)
Corazón , Regeneración , Animales , Mamíferos , MiocardioRESUMEN
Cardiomyocyte (CM) proliferative potential varies considerably across species. While lower vertebrates and neonatal mammals retain robust capacities for CM proliferation, adult mammalian CMs lose proliferative potential due to cell-cycle withdrawal and polyploidization, failing to mount a proliferative response to regenerate lost CMs after cardiac injury. The decline of murine CM proliferative potential occurs in the neonatal period when the endocrine system undergoes drastic changes for adaptation to extrauterine life. We recently demonstrated that thyroid hormone (TH) signaling functions as a primary factor driving CM proliferative potential loss in vertebrates. Whether other hormonal pathways govern this process remains largely unexplored. Here we showed that agonists of glucocorticoid receptor (GR) and vitamin D receptor (VDR) suppressed neonatal CM proliferation. We next examined CM nucleation and proliferation in neonatal mutant mice lacking GR or VDR specifically in CMs, but we observed no difference between mutant and control littermates at postnatal day 14. Additionally, we generated compound mutant mice that lack GR or VDR and express dominant-negative TH receptor alpha in their CMs, and similarly observed no increase in CM proliferative potential compared to dominant-negative TH receptor alpha mice alone. Thus, although GR and VDR activation is sufficient to inhibit CM proliferation, they seem to be dispensable for neonatal CM cell-cycle exit and polyploidization in vivo. In addition, given the recent report that VDR activation in zebrafish promotes CM proliferation and tissue regeneration, our results suggest distinct roles of VDR in zebrafish and rodent CM cell-cycle regulation.
Asunto(s)
Miocitos Cardíacos/metabolismo , Receptores de Calcitriol/genética , Receptores de Glucocorticoides/genética , Animales , Animales Recién Nacidos , Biomarcadores , División Celular , Proliferación Celular/genética , Células Cultivadas , Femenino , Técnica del Anticuerpo Fluorescente , Inmunohistoquímica , Masculino , Ratones , Ratones Noqueados , Receptores de Calcitriol/agonistas , Receptores de Calcitriol/metabolismo , Receptores de Glucocorticoides/metabolismo , Transducción de Señal , Hormonas Tiroideas/metabolismoRESUMEN
The adult mammalian heart possesses little regenerative potential following injury. Fibrosis due to activation of cardiac fibroblasts impedes cardiac regeneration and contributes to loss of contractile function, pathological remodelling and susceptibility to arrhythmias. Cardiac fibroblasts account for a majority of cells in the heart and represent a potential cellular source for restoration of cardiac function following injury through phenotypic reprogramming to a myocardial cell fate. Here we show that four transcription factors, GATA4, HAND2, MEF2C and TBX5, can cooperatively reprogram adult mouse tail-tip and cardiac fibroblasts into beating cardiac-like myocytes in vitro. Forced expression of these factors in dividing non-cardiomyocytes in mice reprograms these cells into functional cardiac-like myocytes, improves cardiac function and reduces adverse ventricular remodelling following myocardial infarction. Our results suggest a strategy for cardiac repair through reprogramming fibroblasts resident in the heart with cardiogenic transcription factors or other molecules.
Asunto(s)
Transdiferenciación Celular , Reprogramación Celular , Fibroblastos/citología , Corazón/fisiología , Infarto del Miocardio/terapia , Miocitos Cardíacos/citología , Factores de Transcripción/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Linaje de la Célula , Fibroblastos/fisiología , Corazón/fisiopatología , Ratones , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Miocardio/citología , Miocardio/patología , Miocitos Cardíacos/fisiología , Fenotipo , Medicina Regenerativa/métodos , Proteína de Unión al Calcio S100A4 , Proteínas S100/genética , Proteínas S100/metabolismo , Cola (estructura animal)/citología , Factores de Transcripción/genéticaRESUMEN
The receptor-evoked Ca(2+) signal includes activation of the store-operated channels (SOCs) TRPCs and the Orais. Although both are gated by STIM1, it is not known how STIM1 gates the channels and whether STIM1 gates the TRPCs and Orais by the same mechanism. Here, we report the molecular mechanism by which STIM1 gates TRPC1, which involves interaction between two conserved, negatively charged aspartates in TRPC1((639)DD(640)) with the positively charged STIM1((684)KK(685)) in STIM1 polybasic domain. Charge swapping and functional analysis revealed that exact orientation of the charges on TRPC1 and STIM1 are required, but all positive-negative charge combinations on TRPC1 and STIM1, except STIM1((684)EE(685))+TRPC1((639)RR(640)), are functional as long as they are reciprocal, indicating that STIM1 gates TRPC1 by intermolecular electrostatic interaction. Similar gating was observed with TRPC3((697)DD(698)). STIM1 gates Orai1 by a different mechanism since the polybasic and S/P domains of STIM1 are not required for activation of Orai1 by STIM1.
Asunto(s)
Canales de Calcio/fisiología , Calcio/fisiología , Proteínas de la Membrana/fisiología , Proteínas de Neoplasias/fisiología , Canales Catiónicos TRPC/fisiología , Secuencia de Aminoácidos , Biotinilación , Línea Celular , Membrana Celular/fisiología , Retículo Endoplásmico/fisiología , Humanos , Activación del Canal Iónico , Riñón , Proteínas de la Membrana/química , Datos de Secuencia Molecular , Mutación , Proteínas de Neoplasias/química , Proteína ORAI1 , Electricidad Estática , Molécula de Interacción Estromal 1 , Canales Catiónicos TRPC/química , Canales Catiónicos TRPC/genética , TransfecciónRESUMEN
Stromal interacting molecule 1 (STIM1) is a Ca(2+) sensor that conveys the Ca(2+) load of the endoplasmic reticulum to store-operated channels (SOCs) at the plasma membrane. Here, we report that STIM1 binds TRPC1, TRPC4 and TRPC5 and determines their function as SOCs. Inhibition of STIM1 function inhibits activation of TRPC5 by receptor stimulation, but not by La(3+), suggesting that STIM1 is obligatory for activation of TRPC channels by agonists, but STIM1 is not essential for channel function. Through a distinct mechanism, STIM1 also regulates TRPC3 and TRPC6. STIM1 does not bind TRPC3 and TRPC6, and regulates their function indirectly by mediating the heteromultimerization of TRPC3 with TRPC1 and TRPC6 with TRPC4. TRPC7 is not regulated by STIM1. We propose a new definition of SOCs, as channels that are regulated by STIM1 and require the store depletion-mediated clustering of STIM1. By this definition, all TRPC channels, except TRPC7, function as SOCs.
Asunto(s)
Señalización del Calcio/fisiología , Calcio/metabolismo , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Canales Catiónicos TRPC/metabolismo , Sitios de Unión/fisiología , Señalización del Calcio/efectos de los fármacos , Línea Celular , Agonistas Colinérgicos/farmacología , Gadolinio/farmacología , Humanos , Sustancias Macromoleculares/metabolismo , Proteínas de la Membrana/genética , Proteínas de Neoplasias/genética , Unión Proteica/fisiología , Subunidades de Proteína/efectos de los fármacos , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/fisiología , Molécula de Interacción Estromal 1 , Canales Catiónicos TRPC/efectos de los fármacos , Canales Catiónicos TRPC/genéticaRESUMEN
Interest in vertebrate cardiac regeneration has exploded over the past two decades since the discovery that adult zebrafish are capable of complete heart regeneration, contrasting the limited regenerative potential typically observed in adult mammalian hearts. Undercovering the mechanisms that both support and limit cardiac regeneration across the animal kingdom may provide unique insights in how we may unlock this capacity in adult humans. In this review, we discuss key discoveries in the heart regeneration field over the last 20 years. Initially, seminal findings revealed that pre-existing cardiomyocytes are the major source of regenerated cardiac muscle, drawing interest into the intrinsic mechanisms regulating cardiomyocyte proliferation. Moreover, recent studies have identified the importance of intercellular interactions and physiological adaptations, which highlight the vast complexity of the cardiac regenerative process. Finally, we compare strategies that have been tested to increase the regenerative capacity of the adult mammalian heart. This article is categorized under: Cardiovascular Diseases > Stem Cells and Development.
Asunto(s)
Miocitos Cardíacos , Pez Cebra , Animales , Adulto , Humanos , Miocitos Cardíacos/fisiología , Pez Cebra/fisiología , Proliferación Celular , Miocardio , Investigación , MamíferosRESUMEN
Cardiac aging involves the development of left ventricular hypertrophy alongside a decline in functional capacity. Here, we use neutral blood exchange to demonstrate that the acute removal of age-accumulated blood factors significantly regresses cardiac hypertrophy in aged mice. The reversal of hypertrophy was not attributed to age-associated hemodynamic effects, implicating a role of blood-derived factors. In addition, the overarching paradigm of systemic aging maintains that the age-related overabundance of plasma proteins are largely responsible for causing pathological phenotypes in tissues. Our results suggest that blood metabolites, not proteins, drive cardiac hypertrophy instead. Upon analyzing serum metabolomics data sets, we identified ophthalmic acid as a circulating metabolite whose levels increase with advanced age. Treatment of adult mouse and neonatal rat cardiomyocytes in culture with ophthalmic acid increased their relative surface areas. This study uncovers a non-protein metabolite that may contribute to cardiomyocyte hypertrophy during aging. Identifying a method to counteract ophthalmic acid's hypertrophic effects may reveal novel therapeutic opportunities for cardiac rejuvenation.
RESUMEN
Receptor-evoked Ca2+ signalling involves Ca2+ release from the endoplasmic reticulum, followed by Ca2+ influx across the plasma membrane. Ca2+ influx is essential for many cellular functions, from secretion to transcription, and is mediated by Ca2+-release activated Ca2+ (I(crac)) channels and store-operated calcium entry (SOC) channels. Although the molecular identity and regulation of I(crac) and SOC channels have not been precisely determined, notable recent findings are the identification of STIM1, which has been indicated to regulate SOC and I(crac) channels by functioning as an endoplasmic reticulum Ca2+ sensor, and ORAI1 (ref. 7) or CRACM1 (ref. 8)--both of which may function as I(crac) channels or as an I(crac) subunit. How STIM1 activates the Ca2+ influx channels and whether STIM1 contributes to the channel pore remains unknown. Here, we identify the structural features that are essential for STIM1-dependent activation of SOC and I(crac) channels, and demonstrate that they are identical to those involved in the binding and activation of TRPC1. Notably, the cytosolic carboxyl terminus of STIM1 is sufficient to activate SOC, I(crac) and TRPC1 channels even when native STIM1 is depleted by small interfering RNA. Activity of STIM1 requires an ERM domain, which mediates the selective binding of STIM1 to TRPC1, 2 and 4, but not to TRPC3, 6 or 7, and a cationic lysine-rich region, which is essential for gating of TRPC1. Deletion of either region in the constitutively active STIM1(D76A) yields dominant-negative mutants that block native SOC channels, expressed TRPC1 in HEK293 cells and I(crac) in Jurkat cells. These observations implicate STIM1 as a key regulator of activity rather than a channel component, and reveal similar regulation of SOC, I(crac) and TRPC channel activation by STIM1.
Asunto(s)
Canales de Calcio/fisiología , Señalización del Calcio/fisiología , Proteínas de la Membrana/fisiología , Proteínas de Neoplasias/fisiología , Canales Catiónicos TRPC/fisiología , Secuencia de Aminoácidos , Línea Celular , Núcleo Celular/metabolismo , Humanos , Activación del Canal Iónico , Proteínas de la Membrana/genética , Datos de Secuencia Molecular , Mutación , Proteínas de Neoplasias/genética , Unión Proteica , Transporte de Proteínas , Molécula de Interacción Estromal 1 , Canales Catiónicos TRPC/genéticaRESUMEN
Cardiac regeneration in newborn rodents depends on the ability of pre-existing cardiomyocytes to proliferate and divide. This capacity is lost within the first week of postnatal development when these cells rapidly switch from hyperplasia to hypertrophy, withdraw from the cell cycle, become binucleated, and increase in size. How these dynamic changes in size and ploidy impact cardiomyocyte proliferative potential is not well understood. In this study, we innovate the application of a commercially available digital holographic imaging microscope, the Holomonitor M4, to evaluate the proliferative responses of mononucleated diploid and binucleated tetraploid cardiomyocytes. This instrument coupled with the powerful Holomonitor App Suite software enables long-term label-free quantitative three-dimensional tracking of primary cardiomyocyte dynamics in real-time with single-cell resolution. Our digital holographic imaging results provide direct evidence that mononucleated cardiomyocytes retain significant proliferative potential as most can successfully divide with high frequency. In contrast, binucleated cardiomyocytes exhibit a blunted response to a proliferative stimulus with the majority not attempting to divide at all. Nevertheless, some binucleated cardiomyocytes were capable of complete division, suggesting that these cells still do retain limited proliferative capacity. By quantitatively tracking cardiomyocyte volume dynamics during these proliferative responses, we reveal that both mononucleated and binucleated cells reach a unique size threshold prior to attempted cell division. The absolute threshold is increased by binucleation, which may limit the ability of binucleated cardiomyocytes to divide. By defining the interrelationship between cardiomyocyte size, ploidy, and cell cycle control, we will better understand the cellular mechanisms that drive the loss of mammalian cardiac regenerative capacity after birth.
RESUMEN
Mammals have limited capacity for heart regeneration, whereas zebrafish have extraordinary regeneration abilities. During zebrafish heart regeneration, endothelial cells promote cardiomyocyte cell cycle reentry and myocardial repair, but the mechanisms responsible for promoting an injury microenvironment conducive to regeneration remain incompletely defined. Here, we identify the matrix metalloproteinase Mmp14b as an essential regulator of heart regeneration. We identify a TEAD-dependent mmp14b endothelial enhancer induced by heart injury in zebrafish and mice, and we show that the enhancer is required for regeneration, supporting a role for Hippo signaling upstream of mmp14b. Last, we show that MMP-14 function in mice is important for the accumulation of Agrin, an essential regulator of neonatal mouse heart regeneration. These findings reveal mechanisms for extracellular matrix remodeling that promote heart regeneration.
Asunto(s)
Células Endoteliales , Pez Cebra , Animales , Ratones , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Proliferación Celular , Regeneración , MamíferosRESUMEN
Adult mammalian cardiomyocytes are unable to proliferate to regenerate lost tissue after heart injury. Du et al., reporting in Cell Stem Cell, employ a FUCCI- and MADM-based system to screen for small molecules combinations that produced a collaborative effect on cardiomyocyte cycling and cytokinesis. The authors generate a cocktail of five small molecules that increase cardiomyocyte proliferation and regeneration in vitro and in vivo with high efficiency, and explore its potential in cardiac regenerative repair after myocardial infarction through a new potential pathway for cardiomyocyte cell-cycle re-entry.
RESUMEN
While adult zebrafish and newborn mice possess a robust capacity to regenerate their hearts, this ability is generally lost in adult mammals. The logic behind the diversity of cardiac regenerative capacity across the animal kingdom is not well understood. We have recently reported that animal metabolism is inversely correlated to the abundance of mononucleated diploid cardiomyocytes in the heart, which retain proliferative and regenerative potential. Thyroid hormones are classical regulators of animal metabolism, mitochondrial function, and thermogenesis, and a growing body of scientific evidence demonstrates that these hormonal regulators also have direct effects on cardiomyocyte proliferation and maturation. We propose that thyroid hormones dually control animal metabolism and cardiac regenerative potential through distinct mechanisms, which may represent an evolutionary tradeoff for the acquisition of endothermy and loss of heart regenerative capacity. In this review, we describe the effects of thyroid hormones on animal metabolism and cardiomyocyte regeneration and highlight recent reports linking the loss of mammalian cardiac regenerative capacity to metabolic shifts occurring after birth.
Asunto(s)
Corazón/fisiología , Metabolismo , Regeneración , Hormonas Tiroideas/fisiología , AnimalesRESUMEN
Mammalian cardiomyocytes mostly utilize oxidation of fatty acids to generate ATP. The fetal heart, in stark contrast, mostly uses anaerobic glycolysis. During perinatal development, thyroid hormone drives extensive metabolic remodeling in the heart for adaptation to extrauterine life. These changes coincide with critical functional maturation and exit of the cell cycle, making the heart a post-mitotic organ. Here, we review the current understanding on the perinatal shift in metabolism, hormonal status, and proliferative potential in cardiomyocytes. Thyroid hormone and glucocorticoids have roles in adult cardiac metabolism, and both pathways have been implicated as regulators of myocardial regeneration. We discuss the evidence that suggests these processes could be interrelated and how this can help explain variation in cardiac regeneration across ontogeny and phylogeny, and we note what breakthroughs are still to be made.
Asunto(s)
Glucocorticoides/farmacología , Corazón/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Hormonas Tiroideas/farmacología , Animales , Diferenciación Celular/efectos de los fármacos , Femenino , Glucólisis/efectos de los fármacos , Corazón/embriología , Corazón/crecimiento & desarrollo , Corazón/fisiología , Humanos , Miocitos Cardíacos/fisiología , Embarazo , Regeneración/efectos de los fármacosRESUMEN
Cardiac regeneration is an ancestral trait in vertebrates that is lost both as more recent vertebrate lineages evolved to adapt to new environments and selective pressures, and as members of certain species developmentally progress towards their adult forms. While higher vertebrates like humans and rodents resolve cardiac injury with permanent fibrosis and loss of cardiac output as adults, neonates of these same species can fully regenerate heart structure and function after injury - as can adult lower vertebrates like many teleost fish and urodele amphibians. Recent research has elucidated several broad factors hypothesized to contribute to this loss of cardiac regenerative potential both evolutionarily and developmentally: an oxygen-rich environment, vertebrate thermogenesis, a complex adaptive immune system, and cancer risk trade-offs. In this review, we discuss the evidence for these hypotheses as well as the cellular participators and molecular regulators by which they act to govern heart regeneration in vertebrates.
RESUMEN
Regeneration is widespread across the animal kingdom but varies vastly across phylogeny and even ontogeny. Adult mammalian regeneration in most organs and appendages is limited, while vertebrates such as zebrafish and salamanders are able to regenerate various organs and body parts. Here, we focus on the regeneration of appendages, spinal cord, and heart - organs and body parts that are highly regenerative among fish and amphibian species but limited in adult mammals. We then describe potential genetic, epigenetic, and post-transcriptional similarities among these different forms of regeneration across vertebrates and discuss several theories for diminished regenerative capacity throughout evolution.
RESUMEN
Research conducted across phylogeny on cardiac regenerative responses following heart injury implicates endocrine signaling as a pivotal regulator of both cardiomyocyte proliferation and heart regeneration. Three prominently studied endocrine factors are thyroid hormone, vitamin D, and glucocorticoids, which canonically regulate gene expression through their respective nuclear receptors thyroid hormone receptor, vitamin D receptor, and glucocorticoid receptor. The main animal model systems of interest include humans, mice, and zebrafish, which vary in cardiac regenerative responses possibly due to the differential onsets and intensities of endocrine signaling levels throughout their embryonic to postnatal organismal development. Zebrafish and lower vertebrates tend to retain robust cardiac regenerative capacity into adulthood while mice and other higher vertebrates experience greatly diminished cardiac regenerative potential in their initial postnatal period that is sustained throughout adulthood. Here, we review recent progress in understanding how these three endocrine signaling pathways regulate cardiomyocyte proliferation and heart regeneration with a particular focus on the controversial findings that may arise from different assays, cellular-context, age, and species. Further investigating the role of each endocrine nuclear receptor in cardiac regeneration from an evolutionary perspective enables comparative studies between species in hopes of extrapolating the findings to novel therapies for human cardiovascular disease.