Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Geriatr ; 24(1): 437, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760712

RESUMEN

OBJECTIVES: Motoric cognitive risk syndrome (MCR) is a pre-dementia condition characterized by subjective complaints in cognition and slow gait. Pain interference has previously been linked with cognitive deterioration; however, its specific relationship with MCR remains unclear. We aimed to examine how pain interference is associated with concurrent and incident MCR. METHODS: This study included older adults aged ≥ 65 years without dementia from the Health and Retirement Study. We combined participants with MCR information in 2006 and 2008 as baseline, and the participants were followed up 4 and 8 years later. The states of pain interference were divided into 3 categories: interfering pain, non-interfering pain, and no pain. Logistic regression analysis was done at baseline to examine the associations between pain interference and concurrent MCR. During the 8-year follow-up, Cox regression analysis was done to investigate the associations between pain interference and incident MCR. RESULTS: The study included 7120 older adults (74.6 ± 6.7 years; 56.8% females) at baseline. The baseline prevalence of MCR was 5.7%. Individuals with interfering pain had a significantly increased risk of MCR (OR = 1.51, 95% CI = 1.17-1.95; p = 0.001). The longitudinal analysis included 4605 participants, and there were 284 (6.2%) MCR cases on follow-up. Participants with interfering pain at baseline had a higher risk for MCR at 8 years of follow-up (HR = 2.02, 95% CI = 1.52-2.69; p < 0.001). CONCLUSIONS: Older adults with interfering pain had a higher risk for MCR versus those with non-interfering pain or without pain. Timely and adequate management of interfering pain may contribute to the prevention and treatment of MCR and its associated adverse outcomes.


Asunto(s)
Dolor , Humanos , Femenino , Masculino , Anciano , Estudios de Cohortes , Anciano de 80 o más Años , Dolor/epidemiología , Dolor/diagnóstico , Dolor/psicología , Disfunción Cognitiva/epidemiología , Disfunción Cognitiva/psicología , Disfunción Cognitiva/diagnóstico , Factores de Riesgo , Síndrome , Estudios de Seguimiento , Estudios Longitudinales , Vigilancia de la Población/métodos
2.
Clin Rehabil ; : 2692155241258740, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38863234

RESUMEN

OBJECTIVE: This study aimed to assess the efficacy of radial extracorporeal shock wave therapy in treating upper limb spasticity after a stroke. DESIGN: Randomized controlled trial. SETTING: Zhujiang Hospital of Southern Medical University. SUBJECTS: This study included 95 people with stroke. INTERVENTION: The active (n = 47) and sham-placebo (n = 48) radial extracorporeal shockwave therapy groups received three treatment sessions (every third day). MAIN MEASURES: The Modified Ashworth Scale, Hmax/Mmax ratio, root mean square, co-contraction ratio, mechanical parameters of the muscle and temperature were measured at baseline and days 2, 5 and 8. RESULTS: Among the 135 potential participants screened, 100 were enrolled and allocated randomly, with 95 participants ultimately being included in the intent-to-treat analysis dataset. The active group showed significantly better improvements in upper limb spasticity and muscle function than did the sham-placebo group. Greater improvements in the Modified Ashworth Scale were observed in the active group than in the sham-placebo group (difference, -0.45; 95% CI, -0.69 to -0.22; P < 0.001). Moreover, significant differences in root mean square, co-contraction ratio and Hmax/Mmax ratio were observed between the two groups (all P < 0.001). The mechanical parameters of the biceps muscle were significantly better in the active group than in the sham-placebo group (P < 0.001). The active group had a higher temperature than the sham-placebo group, although the difference was not significant (P = 0.070). CONCLUSIONS: This study revealed that the treatment with extracorporeal shockwave therapy can relieve upper limb spasticity in people with stroke.

3.
J Neuroeng Rehabil ; 21(1): 45, 2024 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570841

RESUMEN

BACKGROUND: Knee osteoarthritis (KOA) is an irreversible degenerative disease that characterized by pain and abnormal gait. Radiography is typically used to detect KOA but has limitations. This study aimed to identify changes in plantar pressure that are associated with radiological knee osteoarthritis (ROA) and to validate them using machine learning algorithms. METHODS: This study included 92 participants with variable degrees of KOA. A modified Kellgren-Lawrence scale was used to classify participants into non-ROA and ROA groups. The total feature set included 210 dynamic plantar pressure features captured by a wearable in-shoe system as well as age, gender, height, weight, and body mass index. Filter and wrapper methods identified the optimal features, which were used to train five types of machine learning classification models for further validation: k-nearest neighbors (KNN), support vector machine (SVM), random forest (RF), AdaBoost, and eXtreme gradient boosting (XGBoost). RESULTS: Age, the standard deviation (SD) of the peak plantar pressure under the left lateral heel (f_L8PPP_std), the SD of the right second peak pressure (f_Rpeak2_std), and the SD of the variation in the anteroposterior displacement of center of pressure (COP) in the right foot (f_RYcopstd_std) were most associated with ROA. The RF model with an accuracy of 82.61% and F1 score of 0.8000 had the best generalization ability. CONCLUSION: Changes in dynamic plantar pressure are promising mechanical biomarkers that distinguish between non-ROA and ROA. Combining a wearable in-shoe system with machine learning enables dynamic monitoring of KOA, which could help guide treatment plans.


Asunto(s)
Osteoartritis de la Rodilla , Dispositivos Electrónicos Vestibles , Humanos , Osteoartritis de la Rodilla/diagnóstico por imagen , Radiografía , Marcha , Aprendizaje Automático
4.
Neuropsychol Rehabil ; : 1-25, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38666380

RESUMEN

ABSTRACTTo assess the impact of ankle-foot orthoses (AFOs) on mobility and gait during dual-task walking in post-stroke survivors. In this cross-sectional, factorial design trial, stroke survivors performed four randomized tasks: (1) dual-task walking with AFOs, (2) single-task walking with AFOs, (3) dual-task walking without AFOs, and (4) single-task walking without AFOs. Primary outcome was the Timed Up and Go (TUG) test, with secondary outcomes including gait metrics, Tinetti scores, and auditory N-back tests. In the results, 48 subjects (38 males and 10 females; 19-65 years) completed the trial. Patients had a greater TUG score with AFOs compared with non-AFOs conditions (95% CI: 7.22-14.41, P < 0.001) in single-task and dual-task conditions. Secondary outcomes showed marked enhancement with AFOs during dual-task walking, with significant interaction effects in gait metrics, balance, and cognitive function (P < 0.05). Although not statistically significant, dual-task effects of TUG and walking speed were more pronounced during dual-task walking. In conclusion, AFOs enhance mobility and gait during both single and dual-task walking in post-stroke survivors.

5.
Small ; 19(37): e2303304, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37150841

RESUMEN

Fingerprints possess wide applications in personal identification, tactile perception, access control, and anti-counterfeiting. However, latent fingerprints are usually left on touched surfaces, leading to the leakage of personal information. Furthermore, tactile perception greatly decreases when fingerprints are covered by gloves. Customized fingerprints are developed to solve these issues, but it is a challenge to develop fingerprints with various customized patterns using traditional techniques due to their requiring special templates, materials, or instruments. Inspired by ripples on the lake, blowing air is used to generate surface waves on a colloidal polyelectrolyte complex, leading to vertical stratification and the accumulation of particles near the top of the film layer. As water rapidly evaporates, the viscosity of these particles significantly increases and the wave is solidified, forming fingerprint patterns. These customized fingerprints integrate functions of grasping objects, personal identification without leaving latent fingerprints and tactile perception enhancement, which can be applied in information security, anti-counterfeiting, tactile sensors, and biological engineering.

6.
J Integr Neurosci ; 22(5): 128, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37735120

RESUMEN

BACKGROUND: Ischemic stroke, the most common stroke type, has threatened human life and health. Currently, intravenous thrombolysis and endovascular thrombectomy are the mainstream treatment methods, but they may cause cerebral ischemia-reperfusion injury (CIRI), which aggravates brain injury. Consequently, it is worthwhile to start with a study of CIRI mechanism to identify better prevention and treatment methods. Applying single-cell RNA sequencing (scRNA-seq) technology to further understand the biological functions of various cell types in CIRI will facilitate the intervention of CIRI. METHODS: This study aimed to establish a rat middle cerebral artery occlusion (MCAO) model to simulate cerebral ischemia-reperfusion, perform enzymatic hydrolysis, and suspend cerebral cortex tissue edema. Single-cell transcriptome sequencing was used, combined with cluster analysis, t-distributed stochastic neighbor embedding (t-SNE) visualization, and other bioinformatics methods to distinguish cell subgroups while using gene ontology (GO) function enrichment and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment to reveal the biological function of each cell subgroup. RESULTS: We identified 21 brain clusters with cell type-specific gene expression patterns and cell subpopulations, as well as 42 marker genes representing different cell subpopulations. The number of cells in clusters 0-3 increased significantly in MCAO group compared to that in the sham group, and nine-cell subpopulations exhibited remarkable differences in the number of genes. Subsequently, GO and KEGG analyses were performed on the top 40 differentially expressed genes (DEGs) in the six cell subpopulations with significant differences. These results indicate that biological processes and signaling pathways are involved in different cell subpopulations. CONCLUSIONS: ScRNA-seq revealed the diversity of cell differentiation and the unique information of cell subpopulations in the cortex of rats with acute ischemic stroke, providing novel insight into the pathological process and drug discovery in stroke.


Asunto(s)
Edema Encefálico , Accidente Cerebrovascular Isquémico , Daño por Reperfusión , Accidente Cerebrovascular , Humanos , Animales , Ratas , Análisis de Expresión Génica de una Sola Célula , Corteza Cerebral , Infarto de la Arteria Cerebral Media
7.
Mediators Inflamm ; 2022: 2558275, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35784175

RESUMEN

Methods: The data sets of GSE56081 and GSE63492 in the Gene Expression Omnibus (GEO) database were used for screening and analysis, and the key gene markers were verified by GSE34095 and GSE126883. Finally, the infiltration of immune cells in the data were analyzed by MCPcounter analysis package. Results: In this study, a ceRNA containing 15 lncRNAs, 9 miRNAs, and 103 mRNAs was constructed. After multimodel screening and verification, key gene marker was found, namely, ATF2. The lncRNA/miRNA/mRNA axis closely related to ATF2 have also been found, namely, SNHG5/miR-299-5p/ATF2. In the analysis of immune infiltration, ATF2 was negatively correlated with T cells but positively correlated with neutrophils and endothelial cells. Conclusion: The SNHG5/miR-299-5p/ATF2 can be used as biomarker of IDD, and infiltration of immune cells plays an important role in the pathological development of IDD. In addition, as a marker of IDD, the involvement of the above-mentioned axis in the pathological development of IDD remains to be further explored.


Asunto(s)
Degeneración del Disco Intervertebral , MicroARNs , ARN Largo no Codificante , Factor de Transcripción Activador 2/genética , Biomarcadores , Células Endoteliales/metabolismo , Humanos , Degeneración del Disco Intervertebral/genética , Degeneración del Disco Intervertebral/metabolismo , Degeneración del Disco Intervertebral/patología , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ARN Mensajero
8.
BMC Musculoskelet Disord ; 23(1): 784, 2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-35978313

RESUMEN

OBJECTIVE: The aim of this study was to explore the longitudinal associations between baseline quadriceps strength and knee joint structural abnormalities in knee osteoarthritis (KOA). METHODS: This study is a longitudinally observational study based on Osteoarthritis Initiative (OAI) cohort, including men and women aged 45-79. Quadriceps strength was measured by isometric knee extension testing at baseline. Knee joint structural abnormalities, including cartilage damage, bone marrow lesions (BMLs), effusion-synovitis and Hoffa-synovitis, were evaluated by Magnetic Resonance Imaging Osteoarthritis Knee Score (MOAKS) at baseline and 1-year follow-up. Generalized estimating equations were employed to examine the associations between quadriceps strength and knee structural abnormalities. All analyses were stratified by sex. RESULTS: One thousand three hundred thirty-eight participants (523 men and 815 women) with a mean age of 61.8 years and a mean BMI of 29.4 kg/m2 were included in this study. For men, no significantly longitudinal association of quadriceps strength with structural abnormalities was detected. In contrast, quadriceps strength was significantly and negatively associated with changes in cartilage damage and BMLs in lateral patellofemoral joint (PFJ) (cartilage damage: OR: 0.91, 95% CI 0.84 to 0.99, P = 0.023; BMLs: OR: 0.85, 95% CI 0.74 to 0.96, P = 0.011) and effusion-synovitis (OR = 0.88, 95% CI 0.78 to 0.99, P = 0.045) among females longitudinally. Higher quadriceps strength was significantly associated with less progression of lateral PFJ cartilage damage, BMLs and effusion-synovitis in females. CONCLUSIONS: Higher quadriceps strength was associated with changes in cartilage damage and BMLs within the lateral PFJ and effusion-synovitis among females, suggesting the potential protective role of quadriceps strength on joint structures in women.


Asunto(s)
Enfermedades de los Cartílagos , Cartílago Articular , Osteoartritis de la Rodilla , Sinovitis , Enfermedades de los Cartílagos/patología , Cartílago Articular/diagnóstico por imagen , Cartílago Articular/patología , Femenino , Humanos , Articulación de la Rodilla/diagnóstico por imagen , Articulación de la Rodilla/patología , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Osteoartritis de la Rodilla/diagnóstico por imagen , Osteoartritis de la Rodilla/patología , Índice de Severidad de la Enfermedad , Sinovitis/patología
9.
BMC Musculoskelet Disord ; 22(1): 142, 2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33546677

RESUMEN

BACKGROUND: Real-time ultrasound imaging (RUSI) has been increasingly used as a form of biofeedback when instructing and re-training muscle contraction. However, the effectiveness of the RUSI on a single sustained contraction of the lumbar multifidus (LM) and transversus abdominis (TrA) has rarely been reported. This preliminary study aimed to determine if the use of RUSI, as visual biofeedback, could enhance the ability of activation and continuous contraction of the trunk muscles including LM and TrA. METHODS: Forty healthy individuals were included and randomly assigned into the experimental group and control group. All subjects performed a preferential activation of the LM and/or TrA (maintained the constraction of LM and/or TrA for 30 s and then relaxed for 2 min), while those in the experimental group also received visual feedback provided by RUSI. The thickness of LM and/or TrA at rest and during contraction (Tc-max, T15s, and T30s) were extracted and recorded. The experiment was repeated three times. RESULTS: No significant differences were found in the thickness of LM at rest (P > 0.999), Tc-max (P > 0.999), and T15s (P = 0.414) between the two groups. However, the ability to recruit LM muscle contraction differed between groups at T30s (P = 0.006), with subjects in the experimental group that received visual ultrasound biofeedback maintaining a relative maximum contraction. Besides, no significant differences were found in the TrA muscle thickness at rest (P > 0.999) and Tc-max (P > 0.999) between the two groups. However, significant differences of contraction thickness were found at T15s (P = 0.031) and T30s (P = 0.010) between the two groups during the Abdominal Drawing-in Maneuver (ADIM), with greater TrA muscle contraction thickness in the experimental group. CONCLUSIONS: RUSI can be used to provide visual biofeedback, which can promote continuous contraction, and improve the ability to activate the LM and TrA muscles in healthy subjects.


Asunto(s)
Dolor de la Región Lumbar , Músculos Abdominales/diagnóstico por imagen , Biorretroalimentación Psicológica , Voluntarios Sanos , Humanos , Contracción Muscular , Ultrasonografía
10.
Bioorg Med Chem ; 28(23): 115777, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32992253

RESUMEN

A series of novel triaryl-based sulfamic acid analogs was designed, synthesized and evaluated as inhibitors of human protein tyrosine phosphatase beta (HPTPß). A novel, easy and efficient synthetic method was developed for target compounds, and the activity determination results showed that most of compounds were good HPTPß inhibitors. Interestingly, the compounds G4 and G25 with simple structure not only showed potent inhibitory activity on HPTPß but also had good inhibitory selectivity over other PTPs (PTP1B, SHP2, LAR and TC-PTP). The molecular docking simulation of compounds with the protein HPTPß helped us understand the structure-activity relationship and clarify some confusing assay results. This research provides references for further drug design of HPTPß and other PTPs inhibitors.


Asunto(s)
Inhibidores Enzimáticos/química , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores/antagonistas & inhibidores , Ácidos Sulfónicos/química , Derivados del Benceno/química , Sitios de Unión , Diseño de Fármacos , Inhibidores Enzimáticos/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/metabolismo , Proteínas Tirosina Fosfatasas/antagonistas & inhibidores , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores/metabolismo , Relación Estructura-Actividad , Ácidos Sulfónicos/metabolismo
11.
Org Biomol Chem ; 17(26): 6426-6431, 2019 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-31206117

RESUMEN

Copper-mediated radical cyclization of naphthalenyl iododifluoromethyl ketones with olefins was successfully developed to generate a series of unprecedented gem-difluorodihydrophenanthrenones, especially 2,2-difluoro-3,4-dihydrophenanthren-1(2H)-one derivatives. This strategy features the use of cheap copper powder and excellent regioselectivity and diastereoselectivity, thus providing a facile approach for application in drug discovery and development. Preliminary mechanistic studies indicate the involvement of difluorinated radical intermediates. Density functional theory (DFT) calculation was performed to provide further evidence for regioselectivity.

13.
Neurochem Res ; 39(5): 922-31, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24706151

RESUMEN

Studies have suggested that mesenchymal stem cells (MSCs) can protect neuronal cells from excitotoxicity, but the underlying mechanisms are still remaining elusive. In the study, we show that microvesicles released by rat bone marrow-derived MSCs (rBMSC-MVs) protect rat pheochromocytoma PC12 cells from glutamate-induced excitotoxicity. BMSC-MVs upregulate Akt phosphorylation and Bcl-2 expression, downregulate Bax expression, and reduce the cleavage of caspase-3 in glutamate-treated PC12 cells. Such protective effects are partially abrogated by inhibiting PI3K, indicating that rBMSC-MVs act via the PI3K/Akt pathway. Transplantation of rBMSC-MVs may, therefore, be a promising strategy to treat cerebral injury or some other neuronal diseases involving excitotoxicity.


Asunto(s)
Glutamatos/toxicidad , Vesículas Transportadoras/fisiología , Animales , Células de la Médula Ósea/metabolismo , Masculino , Células Madre Mesenquimatosas , Células PC12 , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Sprague-Dawley
14.
J Neuroeng Rehabil ; 11: 115, 2014 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-25080831

RESUMEN

BACKGROUND: Functional imaging studies have indicated that patients with low back pain can have significant reductions in cerebral cortex grey matter. However, the mechanisms governing the nociceptive pathways in the human brain are unclear. The aim of this study was to use functional magnetic resonance imaging (fMRI) and regional homogeneity (ReHo) to investigate changes in resting-state brain activity in subjects that experienced experimentally induced low back pain. METHODS: Healthy subjects (n = 15) underwent fMRI (3.0 T) at baseline and during painful stimulation (intramuscular injection of 3% hypertonic saline). RESULTS: Compared to the scans conducted at baseline, scans conducted during experimentally induced low back pain showed increased ReHo on the right side in the medial prefrontal cortex, precuneus, insula, parahippocampal gyrus and cerebellum (posterior lobe), but decreased ReHo in the primary somatosensory cortex, anterior cingulate cortex and parahippocampal gyrus on the left side. The right inferior parietal lobule also showed a decreased ReHo (P < 0.05, cluster threshold ≥10). CONCLUSIONS: These findings suggest that abnormally spontaneous resting-state activity in some brain regions may be associated with pain processing. These changes in neural activity may contribute to the recognition, execution, memory and emotional processing of acute low back pain.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/fisiopatología , Dolor de la Región Lumbar/fisiopatología , Adulto , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Descanso/fisiología , Adulto Joven
15.
Int J Stroke ; 19(1): 50-57, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37542426

RESUMEN

BACKGROUND: Frailty appears to be associated with unfavorable prognosis after stroke in observational studies, but the causality remains largely unknown. AIMS: The aim of this study is to investigate the potential causal effect of frailty on functional outcome at 3 months after ischemic stroke using the Mendelian randomization (MR) framework. METHODS: Genetic instruments for frailty index were identified in a genome-wide association study meta-analysis including 175,226 individuals of European descent. Corresponding genetic association estimates for functional outcome after ischemic stroke at 90 days were taken from the Genetic of Ischemic Stroke Functional Outcome (GISCOME) network of 6021 patients. We performed inverse-variance weighted MR as the main analyses, followed by several alternate methods and sensitivity analyses. RESULTS: In univariable MR, we found evidence that genetically predicted higher frailty index (odds ratio (OR) = 5.12; 95% confidence interval (CI) = 1.31-20.09; p = 0.019) was associated with worse functional outcome (modified Rankin Scale score ⩾3) after ischemic stroke. In further multivariable MR adjusting for potential confounding traits including body mass index, C-reactive protein, inflammatory bowel disease, and smoking initiation, the overall patterns between genetic liability to frailty and poor functional outcome status remained. Sensitivity analyses with complementary methods and with model unadjusted for baseline stroke severity (OR = 4.19; 95% CI = 1.26-13.90; p = 0.019) yielded broadly concordant results. CONCLUSIONS: The present MR study suggested a possible causal effect of frailty on poor functional outcome after ischemic stroke. Frailty might represent a potential target for intervention to improve recovery after ischemic stroke.


Asunto(s)
Fragilidad , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Accidente Cerebrovascular/genética , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular Isquémico/complicaciones , Estudio de Asociación del Genoma Completo , Fragilidad/genética , Fragilidad/complicaciones , Fenotipo , Polimorfismo de Nucleótido Simple
16.
Front Neurosci ; 18: 1369996, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38694896

RESUMEN

Background: Previous evidence suggests a link between gut microbiota and chronic pain, but the causal relationship is not yet fully understood. Methods: We categorized gut microbiota based on phylum, class, order, family, and genus levels and gathered pain-related information from the UKB and FinnGen GWAS project. Then, we conducted MR analysis to explore the potential causal relationship between gut microbiota and chronic pain at 12 specific locations. Results: We have discovered a direct connection between genetic susceptibility in the gut microbiota (gut metabolites) and pain experienced at 12 specific locations. Notably, Serotonin (5-HT) and Glycine were found to be associated with a higher risk of pain in the extremities. On the other hand, certain microbial families and orders were found to have a protective effect against migraines. Specifically, the family Bifidobacteriaceae (IVW, FDR p = 0.013) was associated with a lower risk of migraines. Furthermore, the genus Oxalobacter (IVW, FDR p = 0.044) was found to be linked to an increased risk of low back pain. Importantly, these associations remained significant even after applying the Benjamini-Hochberg correction test. Our analysis did not find any heterogeneity in the data (p > 0.05), as confirmed by the Cochrane's Q-test. Additionally, both the MR-Egger and MR-PRESSO tests indicated no significant evidence of horizontal pleiotropy (p > 0.05). Conclusion: Our MR analysis demonstrated a causal relationship between the gut microbiota and pain, highlighting its potential significance in advancing our understanding of the underlying mechanisms and clinical implications of microbiota-mediated pain.

17.
Exp Neurol ; 376: 114726, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38403042

RESUMEN

BACKGROUND: The complex pathophysiological changes following cerebral ischemia-reperfusion injury (CIRI) include the accumulation of defective proteins and damaged organelles, which cause massive neuron demise. To preserve cellular homeostasis, the autophagy-lysosomal pathway (ALP) is crucial for neurons to dispose of these substances. Many studies have shown that bone mesenchymal stem cell exosomes (BMSC-Exos) can reduce CIRI. However, the specific mechanisms have not been well elucidated, a fact that limits its widespread clinical use. This study aimed to clarify whether BMSC-Exos could attenuate ALP dysfunction by restoring lysosomal function after CIRI via inhibiting mTOR and then activating TFEB nucleus translocation. METHODS: In this study, Flow cytometry, Nanoparticle tracking analysis (NTA), Transmission electron microscope (TEM), and Western blot were used to identify the BMSCs and BMSC-Exos used in this experiment as conforming to the requirements. In vivo experiments, SD rats were modeled with temporary middle cerebral artery occlusion (tMCAO), and BMSC-Exos was injected into the tail vein 2 h after modeling. Triphenyl tetrazolium chloride (TTC) staining, modified neurological severity scores (mNSS), corner turn test, and rotating rod test were used to detect neurological deficits in rats after BMSC-Exos intervention. Western blot and Immunofluorescence were used to detect ALP, transcription factor EB(TFEB) nucleus translocation, and mammalian target of rapamycin (mTOR) change at different time points after modeling and after BMSC-Exos intervention. In vitro experiments, pheochromocytoma cells (PC12) cells were subjected to oxygen-glucose deprivation and reperfusion (OGD/R) modeling to mimic CIRI, and were respectively intervened with BMSC-Exos, BMSC-Exos + MHY 1485 (the mTOR agonist), Rapamycin (the mTOR inhibitor). CCK8, Western blot, and Immunofluorescence were used to detect PC12 cell survival, TFEB nucleus translocation, and cathepsin B(CTSB) Immunofluorescence intensity. RESULTS: We found that ALP dysfunction occurred 72 h after tMCAO, and BMSC-Exos can attenuate ALP dysfunction by restoring lysosomal function. Next, we examined TFEB nucleus translocation and the expression of mTOR, a key regulator of translocation. We found that BMSC-Exos could inhibit mTOR and activate TFEB nucleus translocation. Additional in vitro tests revealed that BMSC-Exos could increase PC12 cell survival after OGD/R, activating TFEB nucleus translocation and enhancing the fluorescence intensity of CTSB, which in turn could be reversed by the mTOR agonist, MHY1485. This effect was similar to another mTOR inhibitor, Rapamycin. CONCLUSION: BMSC-Exos could attenuate ALP dysfunction by restoring lysosomal function after CIRI by inhibiting mTOR and then promoting TFEB nucleus translocation.


Asunto(s)
Autofagia , Exosomas , Lisosomas , Daño por Reperfusión , Animales , Masculino , Ratas , Autofagia/fisiología , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Isquemia Encefálica/metabolismo , Exosomas/metabolismo , Exosomas/trasplante , Lisosomas/metabolismo , Lisosomas/patología , Células Madre Mesenquimatosas/metabolismo , Ratas Sprague-Dawley , Daño por Reperfusión/metabolismo , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR/metabolismo
18.
Front Bioeng Biotechnol ; 12: 1377767, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38817923

RESUMEN

Low back pain (LBP) is one of the most prevalent and disabling disease worldwide. However, the specific biomechanical changes due to LBP are still controversial. The purpose of this study was to estimate the lumbar and lower limb kinematics, lumbar moments and loads, muscle forces and activation during walking in healthy adults and LBP. A total of 18 healthy controls and 19 patients with chronic LBP were tested for walking at a comfortable speed. The kinematic and dynamic data of the subjects were collected by 3D motion capture system and force plates respectively, and then the motion simulation was performed by OpenSim. The OpenSim musculoskeletal model was used to calculate lumbar, hip, knee and ankle joint angle variations, lumbar moments and loads, muscle forces and activation of eight major lumbar muscles. In our results, significant lower lumbar axial rotation angle, lumbar flexion/extension and axial rotation moments, as well as the muscle forces of the four muscles and muscle activation of two muscles were found in patients with LBP than those of the healthy controls (p < 0.05). This study may help providing theoretical support for the evaluation and rehabilitation treatment intervention of patients with LBP.

19.
Front Bioeng Biotechnol ; 11: 1246014, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37609119

RESUMEN

Introduction: Gait, as a fundamental human movement, necessitates the coordination of muscles across swing and stance phases. Functional electrical stimulation (FES) of the tibialis anterior (TA) has been widely applied to foot drop correction for patients with post-stroke during the swing phase. Although the gastrocnemius (GAS) during the stance phase is also affected, the Functional electrical stimulation of the gastrocnemius received less attention. Methods: To address this limitation, a timing- and intensity-adaptive Functional electrical stimulation control strategy was developed for both the TA and GAS. Each channel incorporates a speed-adaptive (SA) module to control stimulation timing and an iterative learning control (ILC) module to regulate the stimulation intensity. These modules rely on real-time kinematic or kinetic data during the swing or stance phase, respectively. The orthotic effects of the system were evaluated on eight patients with post-stroke foot drop. Gait kinematics and kinetics were assessed under three conditions: no stimulation (NS), Functional electrical stimulation to the ankle dorsiflexor tibialis anterior (SA-ILC DS) and FES to the tibialis anterior and the ankle plantarflexor gastrocnemius (SA-ILC DPS). Results: The ankle plantarflexion angle, the knee flexion angle, and the anterior ground reaction force (AGRF) in the SA-ILC DPS condition were significantly larger than those in the NS and SA-ILC DS conditions (p < 0.05). The maximum dorsiflexion angle during the swing phase in the SA-ILC DPS condition was similar to that in the SA-ILC DS condition, with both being significantly larger than the angle observed in the NS condition (p < 0.05). Furthermore, the angle error and force error relative to the set targets were minimized in the SA-ILC DPS condition. Discussion: The observed improvements can be ascribed to the appropriate stimulation timing and intensity provided by the SA-ILC DPS strategy. This study demonstrates that the hybrid and adaptive control strategy of functional electrical stimulation system offers a significant orthotic effect, and has considerable potential for future clinical application.

20.
Brain Sci ; 13(7)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37508950

RESUMEN

Pre-frailty is a transitional stage between health and frailty. Previous studies have demonstrated that individuals with pre-frailty experience declines in cognitive and gait performances compared with healthy individuals. However, the basic neural mechanism underlying this needs to be clarified. In this cross-sectional study, twenty-one healthy older adults and fifteen with pre-frailty underwent three conditions, including a single cognitive task (SC), single walking task (SW), and dual-task (DT), while cortical hemodynamic reactions were measured using functional near-infrared spectroscopy (fNIRS). The prefrail group (PG) showed a significantly lower activation of the left dorsolateral prefrontal cortex (L-DLPFC) than the healthy group (HG) when performing SC (p < 0.05). The PG showed a significantly lower Timed Up and Go test and step speed than the HG during SW (p < 0.05). The coefficient of variation (CV) of the step length of the PG was significantly higher than that of the HG when performing DT (p < 0.05). No significant correlation in cerebral cortex activation and gait parameters in the HG when performing SW and DT was noted (p > 0.05). Participants of the PG with a higher oxygenated area in the left anterior prefrontal cortex (L-APFC) had a lower step frequency during SW (r = -0.533, p = 0.041), and so did the following indicators of the PG during DT: L-APFC and step speed (r = -0.557, p = 0.031); right anterior prefrontal cortex and step speed (r = -0.610, p = 0.016); left motor cortex and step speed (r = -0.674, p = 0.006); step frequency (r = -0.656, p = 0.008); and step length (r = -0.535, p = 0.040). The negative correlations between the cerebral cortex and gait parameters of the PG indicated a neural compensatory effect of pre-frailty. Therefore, older adults with pre-frailty promote prefrontal activation to compensate for the impaired sensorimotor systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA