Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
BMC Genomics ; 22(1): 76, 2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-33482734

RESUMEN

BACKGROUND: Though interest in human simple sequence repeats (SSRs) is increasing, little is known about the exact distributional features of numerous SSRs in human Y-DNA at chromosomal level. Herein, totally 540 maps were established, which could clearly display SSR landscape in every bin of 1 k base pairs (Kbp) along the sequenced part of human reference Y-DNA (NC_000024.10), by our developed differential method for improving the existing method to reveal SSR distributional characteristics in large genomic sequences. RESULTS: The maps show that SSRs accumulate significantly with forming density peaks in at least 2040 bins of 1 Kbp, which involve different coding, noncoding and intergenic regions of the Y-DNA, and 10 especially high density peaks were reported to associate with biological significances, suggesting that the other hundreds of especially high density peaks might also be biologically significant and worth further analyzing. In contrast, the maps also show that SSRs are extremely sparse in at least 207 bins of 1 Kbp, including many noncoding and intergenic regions of the Y-DNA, which is inconsistent with the widely accepted view that SSRs are mostly rich in these regions, and these sparse distributions are possibly due to powerfully regional selection. Additionally, many regions harbor SSR clusters with same or similar motif in the Y-DNA. CONCLUSIONS: These 540 maps may provide the important information of clearly position-related SSR distributional features along the human reference Y-DNA for better understanding the genome structures of the Y-DNA. This study may contribute to further exploring the biological significance and distribution law of the huge numbers of SSRs in human Y-DNA.


Asunto(s)
Repeticiones de Microsatélite , Polimorfismo Genético , ADN/genética , Genoma , Genoma de Planta , Humanos , Repeticiones de Microsatélite/genética , Análisis de Secuencia de ADN
2.
Biochem Biophys Res Commun ; 565: 79-84, 2021 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-34098315

RESUMEN

Lots of viral genomes were found to contain microsatellites (SSRs) including Ebolavirus, and majority of Ebolavirus microsatellite sites are distributed in protein-coding regions of the genomes. Here, we totally identified 212 reserved microsatellite sites in the protein-coding regions of 213 genomic sequences from five Ebolavirus species. In these reserved microsatellite sites, there is only one significantly conserved microsatellite site among the sample Ebolavirus genomic sequences, and this microsatellite is located at RNA editing site of the GP gene, indicating the selective relevance with RNA editing there. This analysis may help to further explore the biological significance of various microsatellites in Ebolavirus genomes.


Asunto(s)
Ebolavirus/genética , Repeticiones de Microsatélite/genética , Edición Génica
3.
BMC Genomics ; 21(1): 563, 2020 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-32807079

RESUMEN

BACKGROUND: The ubiquitous presence of short tandem repeats (STRs) in virtually all genomes implicates their functional relevance, while a widely-accepted definition of STR is yet to be established. Previous studies majorly focus on relatively longer STRs, while shorter repeats were generally excluded. Herein, we have adopted a more generous criteria to define shorter repeats, which has led to the definition of a much larger number of STRs that lack prior analysis. Using this definition, we analyzed the short repeats in 55 randomly selected segments in 55 randomly selected genomic sequences from a fairly wide range of species covering animals, plants, fungi, protozoa, bacteria, archaea and viruses. RESULTS: Our analysis reveals a high percentage of short repeats in all 55 randomly selected segments, indicating that the universal presence of high-content short repeats could be a common characteristic of genomes across all biological kingdoms. Therefore, it is reasonable to assume a mechanism for continuous production of repeats that can make the replicating process relatively semi-conservative. We have proposed a folded replication slippage model that considers the geometric space of nucleotides and hydrogen bond stability to explain the mechanism more explicitly, with improving the existing straight-line slippage model. The folded slippage model can explain the expansion and contraction of mono- to hexa- nucleotide repeats with proper folding angles. Analysis of external forces in the folding template strands also suggests that expansion exists more commonly than contraction in the short tandem repeats. CONCLUSION: The folded replication slippage model provides a reasonable explanation for the continuous occurrences of simple sequence repeats in genomes. This model also contributes to the explanation of STR-to-genome evolution and is an alternative model that complements semi-conservative replication.


Asunto(s)
Genoma , Repeticiones de Microsatélite , Animales , Genómica , Repeticiones de Microsatélite/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA