Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant Cell Physiol ; 65(2): 199-215, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-37951591

RESUMEN

Previous studies on the intricate interactions between plants and microorganisms have revealed that fungal volatile compounds (VCs) can affect plant growth and development. However, the precise mechanisms underlying these actions remain to be delineated. In this study, we discovered that VCs from the soilborne fungus Tolypocladium inflatum GT22 enhance the growth of Arabidopsis. Remarkably, priming Arabidopsis with GT22 VCs caused the plant to display an enhanced immune response and mitigated the detrimental effects of both pathogenic infections and copper stress. Transcriptomic analyses of Arabidopsis seedlings treated with GT22 VCs for 3, 24 and 48 h revealed that 90, 83 and 137 genes were differentially expressed, respectively. The responsive genes are known to be involved in growth, hormone regulation, defense mechanisms and signaling pathways. Furthermore, we observed the induction of genes related to innate immunity, hypoxia, salicylic acid biosynthesis and camalexin biosynthesis by GT22 VCs. Among the VCs emitted by GT22, exposure of Arabidopsis seedlings to limonene promoted plant growth and attenuated copper stress. Thus, limonene appears to be a key mediator of the interaction between GT22 and plants. Overall, our findings provide evidence that fungal VCs can promote plant growth and enhance both biotic and abiotic tolerance. As such, our study suggests that exposure of seedlings to T. inflatum GT22 VCs may be a means of improving crop productivity. This study describes a beneficial interaction between T. inflatun GT22 and Arabidopsis. Our investigation of microorganism function in terms of VC activities allowed us to overcome the limitations of traditional microbial application methods. The importance of this study lies in the discovery of T. inflatun GT22 as a beneficial microorganism. This soilborne fungus emits VCs with plant growth-promoting effects and the ability to alleviate both copper and pathogenic stress. Furthermore, our study offers a valuable approach to tracking the activities of fungal VC components via transcriptomic analysis and sheds light on the mechanisms through which VCs promote plant growth and induce resistance. This research significantly advances our knowledge of VC applications and provides an example for further investigations within this field.


Asunto(s)
Arabidopsis , Hypocreales , Arabidopsis/genética , Cobre/farmacología , Cobre/metabolismo , Limoneno/metabolismo , Limoneno/farmacología , Hypocreales/metabolismo , Plantas/metabolismo , Plantones/metabolismo , Regulación de la Expresión Génica de las Plantas
2.
Ecotoxicol Environ Saf ; 272: 116055, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38340597

RESUMEN

2-Methyl-1-butanol (2MB) and 3-Methyl-1-butanol (3MB) are microbial volatile organic compounds (VOCs) and found in indoor air. Here, we applied rice as a bioindicator to investigate the effects of these indoor microbial volatile pollutants. A remarkable decrease in germination percentage, shoot and root elongation, as well as lateral root numbers were observed in 3MB. Furthermore, ROS production increased by 2MB and 3MB, suggesting that pentanol isomers could induce cytotoxicity in rice seedlings. The enhancement of peroxidase (POD) and catalase (CAT) activity provided evidence that pentanol isomers activated the enzymatic antioxidant scavenging systems, with a more significant effect observed in 3MB. Furthermore, 3MB induced higher activity levels of glutathione (GSH), oxidized glutathione (GSSG), and the GSH/GSSG ratio in rice compared to the levels induced by 2MB. Additionally, qRT-PCR analysis showed more up-regulation in the expression of glutaredoxins (GRXs), peroxiredoxins (PRXs), thioredoxins (TRXs), and glutathione S-transferases (GSTUs) genes in 3MB. Taking the impacts of pentanol isomers together, the present study suggests that 3MB exhibits more cytotoxic than 2MB, as such has critical effects on germination and the early seedling stage of rice. Our results provide molecular insights into how isomeric indoor microbial volatile pollutants affect plant growth through airborne signals.


Asunto(s)
Contaminantes Ambientales , Oryza , Antioxidantes/metabolismo , Plantones , Oryza/metabolismo , Pentanoles/metabolismo , Pentanoles/farmacología , 1-Butanol/metabolismo , 1-Butanol/farmacología , Contaminantes Ambientales/metabolismo , Disulfuro de Glutatión/metabolismo , Estrés Oxidativo , Glutatión/metabolismo , Raíces de Plantas/metabolismo
3.
Plant Mol Biol ; 111(1-2): 21-36, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36109466

RESUMEN

KEY MESSAGE: Plant-deleterious microbial volatiles activate the transactivation of hypoxia, MAMPs and wound responsive genes in Arabidopsis thaliana. AtMKK1 and AtMKK3 are involved in the plant-deleterious microbial volatiles-induced defense responses. Microbial volatile compounds (mVCs) are a collection of volatile metabolites from microorganisms with biological effects on all living organisms. mVCs function as gaseous modulators of plant growth and plant health. In this study, the defense events induced by plant-deleterious mVCs were investigated. Enterobacter aerogenes VCs lead to growth inhibition and immune responses in Arabidopsis thaliana. E. aerogenes VCs negatively regulate auxin response and transport gene expression in the root tip, as evidenced by decreased expression of DR5::GFP, PIN3::PIN3-GFP and PIN4::PIN4-GFP. Data from transcriptional analysis suggests that E. aerogenes VCs trigger hypoxia response, innate immune responses and metabolic processes. In addition, the transcript levels of the genes involved in the synthetic pathways of antimicrobial metabolites camalexin and coumarin are increased after the E. aerogenes VCs exposure. Moreover, we demonstrate that MKK1 serves as a regulator of camalexin biosynthesis gene expression in response to E. aerogenes VCs, while MKK3 is the regulator of coumarin biosynthesis gene expression. Additionally, MKK1 and MKK3 mediate the E. aerogenes VCs-induced callose deposition. Collectively, these studies provide molecular insights into immune responses by plant-deleterious mVCs.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Indoles/metabolismo , Plantas/metabolismo , Cumarinas/metabolismo , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/metabolismo
4.
Plant Mol Biol ; 113(4-5): 143-155, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37985583

RESUMEN

Microbial volatile compounds (mVCs) may cause stomatal closure to limit pathogen invasion as part of plant innate immune response. However, the mechanisms of mVC-induced stomatal closure remain unclear. In this study, we co-cultured Enterobacter aerogenes with Arabidopsis (Arabidopsis thaliana) seedlings without direct contact to initiate stomatal closure. Experiments using the reactive oxygen species (ROS)-sensitive fluorescent dye, H2DCF-DA, showed that mVCs from E. aerogenes enhanced ROS production in guard cells of wild-type plants. The involvement of ROS in stomatal closure was then demonstrated in an ROS production mutant (rbohD). In addition, we identified two stages of signal transduction during E. aerogenes VC-induced stomatal closure by comparing the response of wild-type Arabidopsis with a panel of mutants. In the early stage (3 h exposure), E. aerogenes VCs induced stomatal closure in wild-type and receptor-like kinase THESEUS1 mutant (the1-1) but not in rbohD, plant hormone-related mutants (nced3, erf4, jar1-1), or MAPK kinase mutants (mkk1 and mkk3). However, in the late stage (24 h exposure), E. aerogenes VCs induced stomatal closure in wild-type and rbohD but not in nced3, erf4, jar1-1, the1-1, mkk1 or mkk3. Taken together, our results suggest that E. aerogenes mVC-induced plant immune responses modulate stomatal closure in Arabidopsis by a multi-phase mechanism.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Ácido Abscísico/farmacología , Especies Reactivas de Oxígeno , Estomas de Plantas/fisiología
5.
Physiol Plant ; 175(3): e13938, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37243874

RESUMEN

Cinnamaldehyde (CA) is a volatile plant secondary metabolite that exhibits strong anti-pathogenic activities. Nonetheless, less is known about the effect of CA on plant tolerance to abiotic stresses. In this study, we delineated the effects of CA fumigation on rice roots (Oryza Sativa L cv. TNG67) under salinity stress (200 mM NaCl). Our result showed that CA vapor significantly alleviated salinity-induced ROS accumulation and cell death. This CA-induced alleviation appears to be mediated primarily by the upregulation of proline metabolism genes, the rapid proline accumulation, and the decrease of Na+ /K+ ratio as early as 3 h after NaCl treatment. Of note, the activities of peroxidase (POD; EC 1.11.1.7) isozymes a and b were decreased by CA fumigation, and the activities of catalase (CAT; EC 1.11.1.6) and superoxide dismutase (SOD; EC 1.15.1.1) were not significantly affected. Our findings suggest that CA vapor might be useful for priming rice roots to withstand salinity stress, which is more prevalent due to the ongoing global climate change. To the best of our knowledge, this is the first study to show modulation of macro- and micro-elements as well as antioxidative factors after CA fumigation of salinity-stressed rice roots.


Asunto(s)
Oryza , Oryza/genética , Tolerancia a la Sal , Cloruro de Sodio/farmacología , Cloruro de Sodio/metabolismo , Antioxidantes/metabolismo , Prolina/metabolismo , Salinidad
6.
PLoS Genet ; 16(6): e1008831, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32555673

RESUMEN

Conspecific male animals fight for resources such as food and mating opportunities but typically stop fighting after assessing their relative fighting abilities to avoid serious injuries. Physiologically, how the fighting behavior is controlled remains unknown. Using the fighting fish Betta splendens, we studied behavioral and brain-transcriptomic changes during the fight between the two opponents. At the behavioral level, surface-breathing, and biting/striking occurred only during intervals between mouth-locking. Eventually, the behaviors of the two opponents became synchronized, with each pair showing a unique behavioral pattern. At the physiological level, we examined the expression patterns of 23,306 brain transcripts using RNA-sequencing data from brains of fighting pairs after a 20-min (D20) and a 60-min (D60) fight. The two opponents in each D60 fighting pair showed a strong gene expression correlation, whereas those in D20 fighting pairs showed a weak correlation. Moreover, each fighting pair in the D60 group showed pair-specific gene expression patterns in a grade of membership analysis (GoM) and were grouped as a pair in the heatmap clustering. The observed pair-specific individualization in brain-transcriptomic synchronization (PIBS) suggested that this synchronization provides a physiological basis for the behavioral synchronization. An analysis using the synchronized genes in fighting pairs of the D60 group found genes enriched for ion transport, synaptic function, and learning and memory. Brain-transcriptomic synchronization could be a general phenomenon and may provide a new cornerstone with which to investigate coordinating and sustaining social interactions between two interacting partners of vertebrates.


Asunto(s)
Conducta Animal/fisiología , Encéfalo/fisiología , Peces/fisiología , Regulación de la Expresión Génica/fisiología , Transcriptoma/fisiología , Agresión , Animales , Técnicas de Observación Conductual , Conducta Cooperativa , Relaciones Interpersonales , Transporte Iónico/fisiología , Aprendizaje/fisiología , Masculino , Memoria/fisiología , RNA-Seq , Grabación en Video
7.
BMC Plant Biol ; 19(1): 3, 2019 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-30606114

RESUMEN

BACKGROUND: Head formation of broccoli (Brassica oleracea var. italica) is greatly reduced under high temperature (22 °C and 27 °C). Broccoli inbred lines that are capable of producing heads at high temperatures in summer are varieties that are unique to Taiwan. However, knowledge of the early-activated pathways of broccoli head formation under high temperature is limited. RESULTS: We compared heat-tolerant (HT) and heat-sensitive (HS) transcriptome of broccoli under different temperatures. Weighted gene correlation network analysis (WGCNA) revealed that genes involved in calcium signaling pathways, mitogen-activated protein kinase (MAPK) cascades, leucine-rich repeat receptor-like kinases (LRR-RLKs), and genes coding for heat-shock proteins and reactive oxygen species homeostasis shared a similar expression pattern to BoFLC1, which was highly expressed at high temperature (27 °C). Of note, these genes were less expressed in HT than HS broccoli at 22 °C. Co-expression analysis identified a model for LRR-RLKs in survival-reproduction tradeoffs by modulating MAPK- versus phytohormones-signaling during head formation. The difference in head-forming ability in response to heat stress between HT and HS broccoli may result from their differential transcriptome profiles of LRR-RLK genes. High temperature induced JA- as well as suppressed auxin- and cytokinin-related pathways may facilitate a balancing act to ensure fitness at 27 °C. BoFLC1 was less expressed in HT than HS at 22 °C, whereas other FLC homologues were not. Promoter analysis of BoFLC1 showed fewer AT dinucleotide repeats in HT broccoli. These results provide insight into the early activation of stress- or development-related pathways during head formation in broccoli. The identification of the BoFLC1 DNA biomarker may facilitate breeding of HT broccoli. CONCLUSIONS: In this study, HT and HS broccoli genotypes were used to determine the effect of temperature on head formation by transcriptome profiling. On the basis of the expression pattern of high temperature-associated signaling genes, the HS transcriptome may be involved in stress defense instead of transition to the reproductive phase in response to heat stress. Transcriptome profiling of HT and HS broccoli helps in understanding the molecular mechanisms underlying head-forming capacity and in promoting functional marker-assisted breeding.


Asunto(s)
Brassica/crecimiento & desarrollo , Flores/crecimiento & desarrollo , Meristema/crecimiento & desarrollo , Brotes de la Planta/metabolismo , Transcriptoma , Brassica/genética , Brassica/metabolismo , Brassica/fisiología , Flores/metabolismo , Flores/fisiología , Redes Reguladoras de Genes , Estudio de Asociación del Genoma Completo , Respuesta al Choque Térmico , Meristema/metabolismo , Meristema/fisiología , Temperatura , Termotolerancia , Transcriptoma/genética
8.
Plant Cell Physiol ; 58(3): 546-559, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28115496

RESUMEN

To identify the similarities among responses to diverse environmental stresses, we analyzed the transcriptome response of rice roots to three rhizotoxic perturbations (chromium, ferulic acid and mercury) and identified common early-transient, early-constant and delayed gene inductions. Common early response genes were mostly associated with signal transduction and hormones, and delayed response genes with lipid metabolism. Network component analysis revealed complicated interactions among common genes, the most highly connected signaling hubs being PP2C68, MPK5, LRR-RLK and NPR1. Gene architecture studies revealed different conserved promoter motifs and a different ratio of CpG island distribution between early and delayed genes. In addition, early-transient genes had more exons and a shorter first exon. IMEter was used to calculate the transcription regulation effects of introns, with greater effects for the first introns of early-transient than delayed genes. The higher Ka/Ks (non-synonymous/synonymous mutation) ratio of early-constant genes than early-transient, delayed and the genome median demonstrates the rapid evolution of early-constant genes. Our results suggest that finely tuned transcriptional control in response to environmental stress in rice depends on genomic architecture and signal intensity and duration.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Cromo/toxicidad , Ácidos Cumáricos/toxicidad , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/genética , Mercurio/toxicidad , Oryza/efectos de los fármacos , Oryza/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico
9.
Plant J ; 80(5): 834-47, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25237766

RESUMEN

Young incipient species provide ideal materials for untangling the process of ecological speciation in the presence of gene flow. The Miscanthus floridulus/sinensis complex exhibits diverse phenotypic and ecological differences despite recent divergence (approximately 1.59 million years ago). To elucidate the process of genetic differentiation during early stages of ecological speciation, we analyzed genomic divergence in the Miscanthus complex using 72 randomly selected genes from a newly assembled transcriptome. In this study, rampant gene flow was detected between species, estimated as M = 3.36 × 10(-9) to 1.20 × 10(-6) , resulting in contradicting phylogenies across loci. Nevertheless, beast analyses revealed the species identity and the effects of extrinsic cohesive forces that counteracted the non-stop introgression. As expected, early in speciation with gene flow, only 3-13 loci were highly diverged; two to five outliers (approximately 2.78-6.94% of the genome) were characterized by strong linkage disequilibrium, and asymmetrically distributed among ecotypes, indicating footprints of diversifying selection. In conclusion, ecological speciation of incipient species of Miscanthus probably followed the parapatric model, whereas allopatric speciation cannot be completely ruled out, especially between the geographically isolated northern and southern M. sinensis, for which no significant gene flow across oceanic barriers was detected. Divergence between local ecotypes in early-stage speciation began at a few genomic regions under the influence of natural selection and divergence hitchhiking that overcame gene flow.


Asunto(s)
Flujo Génico , Filogenia , Poaceae/genética , China , Ecotipo , Especiación Genética , Variación Genética , Genética de Población , Desequilibrio de Ligamiento , Modelos Genéticos , Taiwán
10.
BMC Genomics ; 16: 1026, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26625945

RESUMEN

BACKGROUND: MicroRNAs (miRNAs) play a vital role in growth, development, and stress response at the post-transcriptional level. Broccoli (Brassica oleracea L. var italic) is an important vegetable crop, and the yield and quality of broccoli are decreased by heat stress. The broccoli inbred lines that are capable of producing head at high temperature in summer are unique varieties in Taiwan. However, knowledge of miRNAomes during the broccoli head formation under heat stress is limited. METHODS: In this study, molecular characterization of two nearly isogenic lines with contrasting head-forming capacity was investigated. Head-forming capacity was better for heat-tolerant (HT) than heat-sensitive (HS) broccoli under heat stress. RESULTS: By deep sequencing and computational analysis, 20 known miRNAs showed significant differential expression between HT and HS genotypes. According to the criteria for annotation of new miRNAs, 24 novel miRNA sequences with differential expression between the two genotypes were identified. To gain insight into functional significance, 213 unique potential targets of these 44 differentially expressed miRNAs were predicted. These targets were implicated in shoot apical development, phase change, response to temperature stimulus, hormone and energy metabolism. The head-forming capacity of the unique HT line was related to autonomous regulation of Bo-FT genes and less expression level of heat shock protein genes as compared to HS. For the genotypic comparison, a set of miRNAs and their targets had consistent expression patterns in various HT genotypes. CONCLUSIONS: This large-scale characterization of broccoli miRNAs and their potential targets is to unravel the regulatory roles of miRNAs underlying heat-tolerant head-forming capacity.


Asunto(s)
Brassica/genética , MicroARNs/genética , Carácter Cuantitativo Heredable , ARN de Planta/genética , Estrés Fisiológico/genética , Temperatura , Secuencia de Bases , Biología Computacional/métodos , Etiquetas de Secuencia Expresada , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Estudios de Asociación Genética , Genotipo , Calor , Endogamia , MicroARNs/química , Conformación de Ácido Nucleico , Fenotipo , Interferencia de ARN , ARN de Planta/química , Reproducibilidad de los Resultados , Análisis de Secuencia de ARN , Transcriptoma
11.
BMC Genomics ; 16: 188, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25879893

RESUMEN

BACKGROUND: Comparative genomics provides insights into the diversification of bacterial species. Bacterial speciation usually takes place with lasting homologous recombination, which not only acts as a cohering force between diverging lineages but brings advantageous alleles favored by natural selection, and results in ecologically distinct species, e.g., frequent host shift in Xanthomonas pathogenic to various plants. RESULTS: Using whole-genome sequences, we examined the genetic divergence in Xanthomonas campestris that infected Brassicaceae, and X. citri, pathogenic to a wider host range. Genetic differentiation between two incipient races of X. citri pv. mangiferaeindicae was attributable to a DNA fragment introduced by phages. In contrast to most portions of the genome that had nearly equivalent levels of genetic divergence between subspecies as a result of the accumulation of point mutations, 10% of the core genome involving with homologous recombination contributed to the diversification in Xanthomonas, as revealed by the correlation between homologous recombination and genomic divergence. Interestingly, 179 genes were under positive selection; 98 (54.7%) of these genes were involved in homologous recombination, indicating that foreign genetic fragments may have caused the adaptive diversification, especially in lineages with nutritional transitions. Homologous recombination may have provided genetic materials for the natural selection, and host shifts likely triggered ecological adaptation in Xanthomonas. To a certain extent, we observed positive selection nevertheless contributed to ecological divergence beyond host shifting. CONCLUSION: Altogether, mediated with lasting gene flow, species formation in Xanthomonas was likely governed by natural selection that played a key role in helping the deviating populations to explore novel niches (hosts) or respond to environmental cues, subsequently triggering species diversification.


Asunto(s)
Adaptación Fisiológica/genética , Genoma Bacteriano , Genómica , Recombinación Homóloga/genética , Xanthomonas/genética , Proteínas Bacterianas/genética , Fenómenos Ecológicos y Ambientales , Variación Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Filogenia , Análisis de Secuencia de ADN , Xanthomonas/clasificación
12.
Physiol Plant ; 153(1): 137-48, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24833217

RESUMEN

Root hair formation is controlled by environmental signals. We found significantly increased Arabidopsis root hair density and length in response to low-dose vanadate (V). Reactive oxygen species (ROS) production was induced with V treatment. We investigated the possible role of NADPH oxidase in altering root system architecture induced by V by using diphenylene iodonium (DPI), an inhibitor of NADPH oxidase, and an NADPH oxidase mutant (rhd2/AtrbohC). NADPH oxidase was involved in root hair elongation induced by V. As well, ethylene receptor (ETR1) and ROOT HAIR DEFECTIVE (RHD6) participated in inducing root hair formation induced by V. Furthermore, the kinase inhibitors, genistein (tyrosine kinase inhibitor) and K252a (ser/thr kinase inhibitor), and a phosphatase inhibitor, cantharidin (ser/thr phosphatase inhibitor), suppressed root hair formation induced by V. To elucidate the regulation of gene expression in response to V, we investigated transcriptional changes in roots by microarray assay. Exposure to V triggered changes in transcript levels of genes related to cell wall formation, ROS activity and signaling. Several genes involved in root hair formation were also regulated.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , NADPH Oxidasas/genética , Transducción de Señal/efectos de los fármacos , Vanadatos/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/antagonistas & inhibidores , Proteínas de Arabidopsis/metabolismo , Cantaridina/farmacología , Pared Celular/metabolismo , Inhibidores Enzimáticos/farmacología , Perfilación de la Expresión Génica , Genes Reporteros , Genisteína/farmacología , Mutación , NADPH Oxidasas/antagonistas & inhibidores , NADPH Oxidasas/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Compuestos Onio/farmacología , Fenotipo , Fosforilación , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Especies Reactivas de Oxígeno/metabolismo , Plantones
13.
Plant Mol Biol ; 86(1-2): 157-70, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25056418

RESUMEN

Cr(VI) is the most toxic valency form of Cr, but its toxicity targets and the cellular systems contributing to acquisition of tolerance remain to be resolved at the molecular level in plants. We used microarray assay to analyze the transcriptomic profiles of rice roots in response to Cr(VI) stress. Gene ontology analysis revealed that the 2,688 Cr-responsive genes were involved in binding activity, metabolic process, biological regulation, cellular process and catalytic activity. More transcripts were responsive to Cr(VI) during long-term exposure (24 h, 2,097 genes), than short-term exposure (1- and 3-h results pooled, 1,181 genes). Long-term Cr(VI)-regulated genes are involved in cytokinin signaling, the ubiquitin-proteasome system pathway, DNA repair and Cu transportation. The expression of AS2 transcription factors was specifically modulated by long-term Cr(VI) stress. The protein kinases receptor-like cytoplasmic kinase and receptor-like kinase in flowers 3 were significantly upregulated with only short-term Cr(VI) exposure. In addition, 4 mitogen-activated protein kinase kinase kinases, 1 mitogen-activated protein kinase (MAPK) and 1 calcium-dependent protein kinase (CDPK) were upregulated with short-term Cr(VI) treatment. Expression of reactive oxygen species and calcium and activity of MAPKs and CDPK-like kinases were induced with increasing Cr(VI) concentration. These results may provide new insights into understanding the mechanisms of Cr toxicity and tolerance during different stages in rice roots.


Asunto(s)
Cromo/toxicidad , Oryza/genética , Estrés Fisiológico , Reparación del ADN , Perfilación de la Expresión Génica , Oryza/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Transducción de Señal , Factores de Tiempo
14.
BMC Plant Biol ; 14: 94, 2014 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-24734953

RESUMEN

BACKGROUND: Arsenic (As) is a toxic metalloid found ubiquitously in the environment and widely considered an acute poison and carcinogen. However, the molecular mechanisms of the plant response to As and ensuing tolerance have not been extensively characterized. Here, we report on transcriptional changes with As treatment in two Arabidopsis accessions, Col-0 and Ws-2. RESULTS: The root elongation rate was greater for Col-0 than Ws-2 with As exposure. Accumulation of As was lower in the more tolerant accession Col-0 than in Ws-2. We compared the effect of As exposure on genome-wide gene expression in the two accessions by comparative microarray assay. The genes related to heat response and oxidative stresses were common to both accessions, which indicates conserved As stress-associated responses for the two accessions. Most of the specific response genes encoded heat shock proteins, heat shock factors, ubiquitin and aquaporin transporters. Genes coding for ethylene-signalling components were enriched in As-tolerant Col-0 with As exposure. A tolerance-associated gene candidate encoding Leucine-Rich Repeat receptor-like kinase VIII (LRR-RLK VIII) was selected for functional characterization. Genetic loss-of-function analysis of the LRR-RLK VIII gene revealed altered As sensitivity and the metal accumulation in roots. CONCLUSIONS: Thus, ethylene-related pathways, maintenance of protein structure and LRR-RLK VIII-mediated signalling may be important mechanisms for toxicity and tolerance to As in the species. Here, we provide a comprehensive survey of global transcriptional regulation for As and identify stress- and tolerance-associated genes responding to As.


Asunto(s)
Adaptación Fisiológica/genética , Arabidopsis/genética , Arabidopsis/fisiología , Arsénico/toxicidad , Perfilación de la Expresión Génica , Genes de Plantas , Transducción de Señal/genética , Adaptación Fisiológica/efectos de los fármacos , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , ADN Bacteriano/genética , Ecotipo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Ontología de Genes , Estudios de Asociación Genética , Mutación/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Transducción de Señal/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética , Transcriptoma/efectos de los fármacos , Transcriptoma/genética
15.
Physiol Plant ; 150(2): 205-24, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24033343

RESUMEN

Hexavalent chromium [Cr(VI)] is a non-essential metal for normal plants and is toxic to plants at high concentrations. However, signaling pathways and molecular mechanisms of its action on cell function and gene expression remain elusive. In this study, we found that Cr(VI) induced endogenous reactive oxygen species (ROS) generation and Ca(2+) accumulation and activated NADPH oxidase and calcium-dependent protein kinase. We investigated global transcriptional changes in rice roots by microarray analysis. Gene expression profiling indicated activation of abscisic acid-, ethylene- and jasmonic acid-mediated signaling and inactivation of gibberellic acid-related pathways in Cr(VI) stress-treated rice roots. Genes encoding signaling components such as the protein kinases domain of unknown function 26, receptor-like cytoplasmic kinase, LRK10-like kinase type 2 and protein phosphatase 2C, as well as transcription factors WRKY and apetala2/ethylene response factor were predominant during Cr(VI) stress. Genes involved in vesicle trafficking were subjected to functional characterization. Pretreating rice roots with a vesicle trafficking inhibitor, brefeldin A, effectively reduced Cr(VI)-induced ROS production. Suppression of the vesicle trafficking gene, Exo70, by virus-induced gene silencing strategies revealed that vesicle trafficking is required for mediation of Cr(VI)-induced ROS production. Taken together, these findings shed light on the molecular mechanisms in signaling pathways and transcriptional regulation in response to Cr stress in plants.


Asunto(s)
Cromo/toxicidad , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas/genética , Oryza/efectos de los fármacos , Oryza/genética , Transducción de Señal/genética , Bioensayo , Brefeldino A/farmacología , Calcio/metabolismo , Perfilación de la Expresión Génica , Ontología de Genes , Silenciador del Gen/efectos de los fármacos , Modelos Biológicos , NADPH Oxidasas/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Oryza/enzimología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Proteínas Quinasas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Plantones/efectos de los fármacos , Plantones/metabolismo , Transducción de Señal/efectos de los fármacos , Nicotiana/efectos de los fármacos , Nicotiana/virología
16.
Environ Sci Pollut Res Int ; 31(5): 7556-7568, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38165546

RESUMEN

Indoor air pollution is a global problem and one of the main stress factors that has negative effects on plant and human health. 3-methyl-1-butanol (3MB), an indoor air pollutant, is a microbial volatile organic compound (mVOC) commonly found in damp indoor dwellings. In this study, we reported that 1 mg/L of 3MB can elicit a significant reduction in the stomatal aperture ratio in Arabidopsis and tobacco. Our results also showed that 3MB enhances the reactive oxygen species (ROS) production in guard cells of wild-type Arabidopsis after 24 h exposure. Further investigation of 24 h 3MB fumigation of rbohD, the1-1, mkk1, mkk3, and nced3 mutants revealed that ROS production, cell wall integrity, MAPK kinases cascade, and phytohormone abscisic acid are all involved in the process of 3MB-induced stomatal. Our findings proposed a mechanism by which 3MB regulates stomatal closure in Arabidopsis. Understanding the mechanisms by which microbial indoor air pollutant induces stomatal closure is critical for modulating the intake of harmful gases from indoor environments into leaves. Investigations into how stomata respond to the indoor mVOC 3MB will shed light on the plant's "self-defense" system responding to indoor air pollution.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Pentanoles , Humanos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Estomas de Plantas , Transducción de Señal , Ácido Abscísico/metabolismo
17.
BMC Genomics ; 14: 351, 2013 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-23705659

RESUMEN

BACKGROUND: Autotoxicity plays an important role in regulating crop yield and quality. To help characterize the autotoxicity mechanism of rice, we performed a large-scale, transcriptomic analysis of the rice root response to ferulic acid, an autotoxin from rice straw. RESULTS: Root growth rate was decreased and reactive oxygen species, calcium content and lipoxygenase activity were increased with increasing ferulic acid concentration in roots. Transcriptome analysis revealed more transcripts responsive to short ferulic-acid exposure (1- and 3-h treatments, 1,204 genes) than long exposure (24 h, 176 genes). Induced genes were involved in cell wall formation, chemical detoxification, secondary metabolism, signal transduction, and abiotic stress response. Genes associated with signaling and biosynthesis for ethylene and jasmonic acid were upregulated with ferulic acid. Ferulic acid upregulated ATP-binding cassette and amino acid/auxin permease transporters as well as genes encoding signaling components such as leucine-rich repeat VIII and receptor-like cytoplasmic kinases VII protein kinases, APETALA2/ethylene response factor, WRKY, MYB and Zinc-finger protein expressed in inflorescence meristem transcription factors. CONCLUSIONS: The results of a transcriptome analysis suggest the molecular mechanisms of plants in response to FA, including toxicity, detoxicification and signaling machinery. FA may have a significant effect on inhibiting rice root elongation through modulating ET and JA hormone homeostasis. FA-induced gene expression of AAAP transporters may contribute to detoxicification of the autotoxin. Moreover, the WRKY and Myb TFs and LRR-VIII and SD-2b kinases might regulate downstream genes under FA stress but not general allelochemical stress. This comprehensive description of gene expression information could greatly facilitate our understanding of the mechanisms of autotoxicity in plants.


Asunto(s)
Ácidos Cumáricos/farmacología , Oryza/efectos de los fármacos , Oryza/genética , Raíces de Plantas/efectos de los fármacos , Transcriptoma , Calcio/metabolismo , Pared Celular/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Peroxidación de Lípido/efectos de los fármacos , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Anotación de Secuencia Molecular , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Reguladores del Crecimiento de las Plantas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Polisacáridos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Estrés Fisiológico
18.
Plant Mol Biol ; 81(4-5): 507-22, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23400832

RESUMEN

The phytotoxic effects of copper (Cu) and cadmium (Cd) on plant growth are well documented. However, Cu and Cd toxicity targets and the cellular systems contributing to acquisition of tolerance are not fully understood at the molecular level. We aimed to identify genes and pathways that discriminate the actions of Cu and Cd in rice roots (Oryza sativa L. cv. TN67). The transcripts of 1,450 and 1,172 genes were regulated after Cu and Cd treatments, respectively. We identified 882 genes specifically respond to Cu treatment, and 604 unique genes as Cd-responsive by comparison of expression profiles of these two regulated gene groups. Gene ontology analysis for 538 genes involved in primary metabolism, oxidation reduction and response to stimulus was changed in response to both metals. In the individual aspect, Cu specifically altered levels of genes involved in vesicle trafficking transport, fatty acid metabolism and cellular component biogenesis. Cd-regulated genes related to unfolded protein binding and sulfate assimilation. To further characterize the functions of vesicle trafficking transport under Cu stress, interference of excytosis in root tissues was conducted by inhibitors and silencing of Exo70 genes. It was demonstrated that vesicle-trafficking is required for mediation of Cu-induced reactive oxygen species (ROS) production in root tissues. These results may provide new insights into understanding the molecular basis of the early metal stress response in plants.


Asunto(s)
Cadmio/toxicidad , Cobre/toxicidad , Oryza/efectos de los fármacos , Oryza/genética , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Transcriptoma/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Silenciador del Gen/efectos de los fármacos , Genes de Plantas/genética , Anotación de Secuencia Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Oryza/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Virus de Plantas/efectos de los fármacos , Virus de Plantas/genética , Especies Reactivas de Oxígeno/metabolismo , Reproducibilidad de los Resultados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Plantones/efectos de los fármacos , Plantones/genética , Plantones/crecimiento & desarrollo , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética , Nicotiana/efectos de los fármacos , Nicotiana/genética , Nicotiana/virología , Transcriptoma/efectos de los fármacos , Vesículas Transportadoras/efectos de los fármacos , Vesículas Transportadoras/metabolismo
19.
mSphere ; 8(5): e0032423, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37750721

RESUMEN

Increasing evidence suggests that in disease-suppressive soils, microbial volatile compounds (mVCs) released from bacteria may inhibit the growth of plant-pathogenic fungi. However, the antifungal activities and molecular responses of fungi to different mVCs remain largely undescribed. In this study, we first evaluated the responses of pathogenic fungi to treatment with mVCs from Paenarthrobacter ureafaciens. Then, we utilized the well-characterized fungal model organism Saccharomyces cerevisiae to study the potential mechanistic effects of the mVCs. Our data showed that exposure to P. ureafaciens mVCs leads to reduced growth of several pathogenic fungi, and in yeast cells, mVC exposure prompts the accumulation of reactive oxygen species. Further experiments with S. cerevisiae deletion mutants indicated that Slt2/Mpk1 and Hog1 MAPKs play major roles in the yeast response to P. ureafaciens mVCs. Transcriptomic analysis revealed that exposure to mVCs was associated with 1,030 differentially expressed genes (DEGs) in yeast. According to gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses, many of these DEGs are involved in mitochondrial dysfunction, cell integrity, mitophagy, cellular metabolism, and iron uptake. Genes encoding antimicrobial proteins were also significantly altered in the yeast after exposure to mVCs. These findings suggest that oxidative damage and mitochondrial dysfunction are major contributors to the fungal toxicity of mVCs. Furthermore, our data showed that cell wall, antioxidant, and antimicrobial defenses are induced in yeast exposed to mVCs. Thus, our findings expand upon previous research by delineating the transcriptional responses of the fungal model. IMPORTANCE Since the use of bacteria-emitted volatile compounds in phytopathogen control is of considerable interest, it is important to understand the molecular mechanisms by which fungi may adapt to microbial volatile compounds (mVCs). Paenarthrobacter ureafaciens is an isolated bacterium from disease-suppressive soil that belongs to the Actinomycetota phylum. P. ureafaciens mVCs showed a potent antifungal effect on phytopathogens, which may contribute to disease suppression in soil. However, our knowledge about the antifungal mechanism of mVCs is limited. This study has proven that mVCs are toxic to fungi due to oxidative stress and mitochondrial dysfunction. To deal with mVC toxicity, antioxidants and physical defenses are required. Furthermore, iron uptake and CAP proteins are required for antimicrobial defense, which is necessary for fungi to deal with the thread from mVCs. This study provides essential foundational knowledge regarding the molecular responses of fungi to inhibitory mVCs.


Asunto(s)
Antiinfecciosos , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Antifúngicos/farmacología , Suelo , Hongos , Antiinfecciosos/farmacología , Hierro
20.
Plant Mol Biol ; 80(6): 587-608, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22987115

RESUMEN

Arsenic (As) is considered the most common toxic metalloid, but its molecular mode of action is not well understood. We investigated whether arsenate [As(V)] can induce intracellular reactive oxygen species production and calcium oscillation in rice roots. To better understand the molecular basis of plant cell responses to As, we performed a large-scale analysis of the rice transcriptome during As(V) stress. As(V) induced genes involved in abiotic stress, detoxification pathways and secondary metabolic process. Genes involved in secondary cell wall biogenesis, cell cycle and oligopeptide transport were mainly downregulated. Genes encoding signalling components such as receptor-like cytoplasmic kinases protein kinase, APETALA2/ethylene response factor, heat shock factor, MYB and zinc-finger protein expressed in inflorescence meristem transcription factors were increased in expression. The expression of GARP-G2-like and C3H transcription factors was specifically modulated by As(V) stress. The predominant families of As(V)-regulated transporters belonged to the ATP-binding cassette superfamily and telurite-resistance/dicarboxylate transporters. Several factors involved in signaling, such as mitogen-activated protein kinase (MAPK), MAPK kinase kinase and calcium-dependent protein kinase (CDPK), were also upregulated. Moreover, As(V) markedly increased the activity of MAPKs and CDPK-like kinases, and CDPK and NADPH oxidases were involved in As-induced MAPK activation. Further characterization of these As(V)-responsive genes and signalling pathways may help better understand the mechanisms of metalloid uptake, tolerance and detoxification in plants.


Asunto(s)
Arseniatos/toxicidad , Oryza/efectos de los fármacos , Oryza/genética , Arseniatos/farmacocinética , Señalización del Calcio/efectos de los fármacos , Contaminantes Ambientales/farmacocinética , Contaminantes Ambientales/toxicidad , Genes de Plantas/efectos de los fármacos , Inactivación Metabólica/genética , Inactivación Metabólica/fisiología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Modelos Biológicos , Oryza/metabolismo , Fitoquelatinas/metabolismo , Reguladores del Crecimiento de las Plantas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Estrés Fisiológico , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcriptoma/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA