Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Phys Rev Lett ; 131(2): 026902, 2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37505956

RESUMEN

The interaction of a single-cycle terahertz electric field with the topological insulator MnBi_{2}Te_{4} triggers strongly anharmonic lattice dynamics, promoting fully coherent energy transfer between the otherwise noninteracting Raman-active E_{g} and infrared (IR)-active E_{u} phononic modes. Two-dimensional terahertz spectroscopy combined with modeling based on the classical equations of motion and symmetry analysis reveals the multistage process underlying the excitation of the Raman-active E_{g} phonon. In this nonlinear combined photophononic process, the terahertz electric field first prepares a coherent IR-active E_{u} phononic state and subsequently interacts with this state to efficiently excite the E_{g} phonon.

2.
Nanotechnology ; 21(42): 425602, 2010 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-20858926

RESUMEN

The magnetic and magneto-transport properties of Ni nanowire (NW) arrays, fabricated by electrodeposition in anodic-aluminum-oxide (AAO) templates, have been investigated. The AAO pores have diameters ranging from 35 to 75 nm, and the crystallinity of the Ni NW arrays could change from poly-crystalline to single-crystalline with the [111] and [110] orientations based on the electrodeposition potential. Notably, double switching magnetization loops and double-peaked magnetoresistance curves were observed in [110]-oriented NWs. The crystalline orientation of the Ni NW arrays is found to influence the corresponding magnetic and magneto-transport properties significantly. These magnetic behaviors are dominated by the competition between the magneto-crystalline and shape anisotropy.

3.
Sci Rep ; 5: 11623, 2015 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-26100604

RESUMEN

To improve graphene-based multifunctional devices at nanoscale, a stepwise and controllable fabrication procedure must be elucidated. Here, a series of structural transition of bismuth (Bi) adatoms, adsorbed on monolayer epitaxial graphene (MEG), is explored at room temperature. Bi adatoms undergo a structural transition from one-dimensional (1D) linear structures to two-dimensional (2D) triangular islands and such 2D growth mode is affected by the corrugated substrate. Upon Bi deposition, a little charge transfer occurs and a characteristic peak can be observed in the tunneling spectrum, reflecting the distinctive electronic structure of the Bi adatoms. When annealed to ~500 K, 2D triangular Bi islands aggregate into Bi nanoclusters (NCs) of uniform size. A well-controlled fabrication method is thus demonstrated. The approaches adopted herein provide perspectives for fabricating and characterizing periodic networks on MEG and related systems, which are useful in realizing graphene-based electronic, energy, sensor and spintronic devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA