Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Lab Invest ; 101(4): 430-441, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33574440

RESUMEN

Most biomedical datasets, including those of 'omics, population studies, and surveys, are rectangular in shape and have few missing data. Recently, their sample sizes have grown significantly. Rigorous analyses on these large datasets demand considerably more efficient and more accurate algorithms. Machine learning (ML) algorithms have been used to classify outcomes in biomedical datasets, including random forests (RF), decision tree (DT), artificial neural networks (ANN), and support vector machine (SVM). However, their performance and efficiency in classifying multi-category outcomes of rectangular data are poorly understood. Therefore, we compared these metrics among the 4 ML algorithms. As an example, we created a large rectangular dataset using the female breast cancers in the surveillance, epidemiology, and end results-18 database, which were diagnosed in 2004 and followed up until December 2016. The outcome was the five-category cause of death, namely alive, non-breast cancer, breast cancer, cardiovascular disease, and other cause. We analyzed the 54 dichotomized features from ~45,000 patients using MatLab (version 2018a) and the tenfold cross-validation approach. The accuracy in classifying five-category cause of death with DT, RF, ANN, and SVM was 69.21%, 70.23%, 70.16%, and 69.06%, respectively, which was higher than the accuracy of 68.12% with multinomial logistic regression. Based on the features' information entropy, we optimized dimension reduction (i.e., reduce the number of features in models). We found 32 or more features were required to maintain similar accuracy, while the running time decreased from 55.57 s for 54 features to 25.99 s for 32 features in RF, from 12.92 s to 10.48 s in ANN, and from 175.50 s to 67.81 s in SVM. In summary, we here show that RF, DT, ANN, and SVM had similar accuracy for classifying multi-category outcomes in this large rectangular dataset. Dimension reduction based on information gain will increase the model's efficiency while maintaining classification accuracy.


Asunto(s)
Algoritmos , Diagnóstico por Computador/métodos , Aprendizaje Automático , Anciano , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/epidemiología , Bases de Datos Factuales , Femenino , Humanos , Persona de Mediana Edad , Reproducibilidad de los Resultados , Máquina de Vectores de Soporte
2.
Sensors (Basel) ; 21(23)2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34884112

RESUMEN

Ultrasonic guided waves are sensitive to many different types of defects and have been studied for defect recognition in rail. However, most fault recognition algorithms need to extract features from the time domain, frequency domain, or time-frequency domain based on experience or professional knowledge. This paper proposes a new method for identifying many different types of rail defects. The segment principal components analysis (S-PCA) is developed to extract characteristics from signals collected by sensors located at different positions. Then, the Support Vector Machine (SVM) model is used to identify different defects depending on the features extracted. Combining simulations and experiments of the rails with different kinds of defects are established to verify the effectiveness of the proposed defect identification techniques, such as crack, corrosion, and transverse crack under the shelling. There are nine channels of the excitation-reception to acquire guided wave detection signals. The results show that the defect classification accuracy rates are 96.29% and 96.15% for combining multiple signals, such as the method of single-point excitation and multi-point reception, or the method of multi-point excitation and reception at a single point.


Asunto(s)
Algoritmos , Máquina de Vectores de Soporte , Inteligencia , Análisis de Componente Principal , Ondas Ultrasónicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA