Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Appl Environ Microbiol ; 87(22): e0106521, 2021 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-34524897

RESUMEN

Recent omics studies have provided invaluable insights into the metabolic potential, adaptation, and evolution of novel archaeal lineages from a variety of extreme environments. We utilized a genome-resolved metagenomic approach to recover eight medium- to high-quality metagenome-assembled genomes (MAGs) that likely represent a new order ("Candidatus Sysuiplasmatales") in the class Thermoplasmata from mine tailings and acid mine drainage (AMD) sediments sampled from two copper mines in South China. 16S rRNA gene-based analyses revealed a narrow habitat range for these uncultured archaea limited to AMD and hot spring-related environments. Metabolic reconstruction indicated a facultatively anaerobic heterotrophic lifestyle. This may allow the archaea to adapt to oxygen fluctuations and is thus in marked contrast to the majority of lineages in the domain Archaea, which typically show obligately anaerobic metabolisms. Notably, "Ca. Sysuiplasmatales" could conserve energy through degradation of fatty acids, amino acid metabolism, and oxidation of reduced inorganic sulfur compounds (RISCs), suggesting that they may contribute to acid generation in the extreme mine environments. Unlike the closely related orders Methanomassiliicoccales and "Candidatus Gimiplasmatales," "Ca. Sysuiplasmatales" lacks the capacity to perform methanogenesis and carbon fixation. Ancestral state reconstruction indicated that "Ca. Sysuiplasmatales," the closely related orders Methanomassiliicoccales and "Ca. Gimiplasmatales," and the orders SG8-5 and RBG-16-68-12 originated from a facultatively anaerobic ancestor capable of carbon fixation via the bacterial-type H4F Wood-Ljungdahl pathway (WLP). Their metabolic divergence might be attributed to different evolutionary paths. IMPORTANCE A wide array of archaea populate Earth's extreme environments; therefore, they may play important roles in mediating biogeochemical processes such as iron and sulfur cycling. However, our knowledge of archaeal biology and evolution is still limited, since the majority of the archaeal diversity is uncultured. For instance, most order-level lineages except Thermoplasmatales, Aciduliprofundales, and Methanomassiliicoccales within Thermoplasmata do not have cultured representatives. Here, we report the discovery and genomic characterization of a novel order, "Ca. Sysuiplasmatales," within Thermoplasmata in extremely acidic mine environments. "Ca. Sysuiplasmatales" are inferred to be facultatively anaerobic heterotrophs and likely contribute to acid generation through the oxidation of RISCs. The physiological divergence between "Ca. Sysuiplasmatales" and closely related Thermoplasmata lineages may be attributed to different evolutionary paths. These results expand our knowledge of archaea in the extreme mine ecosystem.


Asunto(s)
Euryarchaeota , Metagenómica , China , Ecosistema , Euryarchaeota/clasificación , Extremófilos , Minería , ARN Ribosómico 16S/genética
2.
Arch Microbiol ; 204(1): 1, 2021 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-34870748

RESUMEN

Strain SYSU D01096T was isolated from a sandy soil sample collected from Gurbantunggut Desert in Xinjiang, PR China. Phylogenetic analysis of the nearly full-length 16S rRNA gene sequence revealed that strain SYSU D01096T belonged to the family Acetobacteraceae and was closest to Rubritepida flocculans DSM 14296T (96.0% similarity). Cells of strain SYSU D01096T were observed to be non-motile, short rod-shaped and Gram-staining negative. The colonies were observed to be translucent, reddish orange, circular, convex and smooth. Growth occurred at 15-37 °C (optimum, 28-30 °C), pH 4.0-8.0 (optimum, pH 7.0) and 0-0.5% NaCl (w/v; optimum, 0%) on Reasoner's 2A medium. The predominant ubiquinone was identified as ubiquinone 9 and the major fatty acids were Summed Feature 8 (C18:1 ω7c and/or C18:1 ω6c) and C16:0. The polar lipids consisted of diphosphatidylglycerol (DPG), phosphatidylethanolamine (PE), phosphatidylcholine (PC), phosphatidylglycerol (PG), one unidentified phospholipid (PL), three unidentified aminolipids (AL1-3) and one unidentified aminophospholipid (APL). The genomic DNA G + C content was 69.1%. Phylogenetic tree based on 16S rRNA gene sequences indicated strain SYSU D01096T represented an individual lineage in the family Acetobacteraceae, which was supported by 30 core gene-based phylogenomic tree. Based on the multi-analysis including physiological, chemotaxonomic and phylogenetic comparison, strain SYSU D01096T was proposed to represent a novel species of a novel genus, named Sabulicella rubraurantiaca gen. nov., sp. nov., within the family Acetobacteraceae. The type strain is SYSU D01096T (= CGMCC 1.8619T = KCTC 82268T = MCCC 1K04998T).


Asunto(s)
Acetobacteraceae , Suelo , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
3.
Int J Syst Evol Microbiol ; 69(9): 2828-2833, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31274406

RESUMEN

Strain SYSU-17, representing a novel acid-tolerant yeast species which can grow at pH 2.0 weakly, was isolated from acid mine drainage collected in a tailing impoundment of the Fankou Lead/Zinc Mine, Guangdong Province, PR China. Phylogenetic analysis of strain SYSU-17 based on the internal transcribed spacer (ITS) region and the D1/D2 domains of the large subunit ribosomal RNA (LSU rRNA) gene suggested that strain SYSU-17 was a novel species belonging to the genus Spencerozyma (class Microbotryomycetes, subphylum Pucciniomycotina). It differed from the type strain of the closest related species, Spencerozyma crocea CBS 2029T, by 0.7 % sequence divergence (three gaps and one nucleotide substitution out of 594 bp) in the D1/D2 domains of the LSU rRNA gene and 7.6 % sequence divergence (32 gaps and 22 nucleotide substitutions out of 714 bp) in the ITS region. In contrast to the physiological properties of S. crocea, the novel yeast species was unable to assimilate galactose, d-ribose, xylitol, succinate, d-xylose, ethanol, nitrate and nitrite. The name Spencerozyma acididurans sp. nov. is proposed and SYSU-17 is designated as the holotype.


Asunto(s)
Basidiomycota/clasificación , Minería , Filogenia , Microbiología del Agua , Ácidos , Basidiomycota/aislamiento & purificación , China , ADN de Hongos/genética , ADN Espaciador Ribosómico/genética , Técnicas de Tipificación Micológica , Análisis de Secuencia de ADN
4.
Environ Sci Technol ; 49(11): 6438-47, 2015 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-25919421

RESUMEN

The crude processing of electronic waste (e-waste) has led to serious contamination in soils. While microorganisms may play a key role in remediation of the contaminated soils, the ecological effects of combined pollution (heavy metals, polychlorinated biphenyls, and polybrominated diphenyl ethers) on the composition and diversity of microbial communities remain unknown. In this study, a suite of e-waste contaminated soils were collected from Guiyu, China, and the indigenous microbial assemblages were profiled by 16S rRNA high-throughput sequencing and clone library analysis. Our data revealed significant differences in microbial taxonomic composition between the contaminated and the reference soils, with Proteobacteria, Acidobacteria, Bacteroidetes, and Firmicutes dominating the e-waste-affected communities. Genera previously identified as organic pollutants-degrading bacteria, such as Acinetobacter, Pseudomonas, and Alcanivorax, were frequently detected. Canonical correspondence analysis revealed that approximately 70% of the observed variation in microbial assemblages in the contaminated soils was explained by eight environmental variables (including soil physiochemical parameters and organic pollutants) together, among which moisture content, decabromodiphenyl ether (BDE-209), and copper were the major factors. These results provide the first detailed phylogenetic look at the microbial communities in e-waste contaminated soils, demonstrating that the complex combined pollution resulting from improper e-waste recycling may significantly alter soil microbiota.


Asunto(s)
Residuos Electrónicos , Consorcios Microbianos/efectos de los fármacos , Reciclaje , Microbiología del Suelo , Contaminantes del Suelo/toxicidad , Bacterias/clasificación , Bacterias/efectos de los fármacos , Bacterias/genética , Biodiversidad , China , Cobre/análisis , Cobre/toxicidad , Ecosistema , Residuos Electrónicos/análisis , Éteres Difenilos Halogenados/análisis , Éteres Difenilos Halogenados/toxicidad , Metales Pesados/análisis , Metales Pesados/toxicidad , Consorcios Microbianos/genética , Filogenia , Bifenilos Policlorados/análisis , Bifenilos Policlorados/toxicidad , ARN Ribosómico 16S/genética , Suelo
5.
Appl Environ Microbiol ; 80(12): 3677-86, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24727268

RESUMEN

Recent molecular surveys have advanced our understanding of the forces shaping the large-scale ecological distribution of microbes in Earth's extreme habitats, such as hot springs and acid mine drainage. However, few investigations have attempted dense spatial analyses of specific sites to resolve the local diversity of these extraordinary organisms and how communities are shaped by the harsh environmental conditions found there. We have applied a 16S rRNA gene-targeted 454 pyrosequencing approach to explore the phylogenetic differentiation among 90 microbial communities from a massive copper tailing impoundment generating acidic drainage and coupled these variations in community composition with geochemical parameters to reveal ecological interactions in this extreme environment. Our data showed that the overall microbial diversity estimates and relative abundances of most of the dominant lineages were significantly correlated with pH, with the simplest assemblages occurring under extremely acidic conditions and more diverse assemblages associated with neutral pHs. The consistent shifts in community composition along the pH gradient indicated that different taxa were involved in the different acidification stages of the mine tailings. Moreover, the effect of pH in shaping phylogenetic structure within specific lineages was also clearly evident, although the phylogenetic differentiations within the Alphaproteobacteria, Deltaproteobacteria, and Firmicutes were attributed to variations in ferric and ferrous iron concentrations. Application of the microbial assemblage prediction model further supported pH as the major factor driving community structure and demonstrated that several of the major lineages are readily predictable. Together, these results suggest that pH is primarily responsible for structuring whole communities in the extreme and heterogeneous mine tailings, although the diverse microbial taxa may respond differently to various environmental conditions.


Asunto(s)
Bacterias/aislamiento & purificación , Biodiversidad , Ecosistema , Aguas Residuales/microbiología , Bacterias/clasificación , Bacterias/genética , Concentración de Iones de Hidrógeno , Minería , Datos de Secuencia Molecular , Filogenia , Aguas Residuales/química
6.
Environ Sci Technol ; 48(10): 5537-45, 2014 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-24730689

RESUMEN

The oxidative dissolution of sulfide minerals (principally pyrite) is responsible for the majority of acid metalliferous drainage from mine sites, which represents a significant environmental problem worldwide. Understanding the complex biogeochemical processes governing natural pyrite oxidation is critical not only for solving this problem but also for understanding the industrial bioleaching of sulfide minerals. To this end, we conducted a simulated experiment of natural pyrite oxidative dissolution. Pyrosequencing analysis of the microbial community revealed a distinct succession across three stages. At the early stage, a newly proposed genus, Tumebacillus (which can use sodium thiosulfate and sulfite as the sole electron donors), dominated the microbial community. At the midstage, Alicyclobacillus (the fifth most abundant genus at the early stage) became the most dominant genus, whereas Tumebacillus was still ranked as the second most abundant. At the final stage, the microbial community was dominated by Ferroplasma (the tenth most abundant genus at the early stage). Our geochemical and mineralogical analyses indicated that exchangeable heavy metals increased as the oxidation progressed and that some secondary sulfate minerals (including jarosite and magnesiocopiapite) were formed at the final stage of the oxidation sequence. Additionally, we propose a comprehensive model of biogeochemical processes governing the oxidation of sulfide minerals.


Asunto(s)
Ácidos/análisis , Hierro/química , Metales/análisis , Minería , Sulfuros/química , Contaminantes Químicos del Agua/análisis , Bacterias/clasificación , Bacterias/metabolismo , Biodegradación Ambiental , Minerales/análisis , Modelos Teóricos , Oxidación-Reducción , Sulfuros/metabolismo
7.
Nat Commun ; 15(1): 1254, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38341424

RESUMEN

It has been extensively studied that the gut microbiome provides animals flexibility to adapt to food variability. Yet, how gut phageome responds to diet variation of wild animals remains unexplored. Here, we analyze the eco-evolutionary dynamics of gut phageome in six wild gibbons (Hoolock tianxing) by collecting individually-resolved fresh fecal samples and parallel feeding behavior data for 15 consecutive months. Application of complementary viral and microbial metagenomics recovers 39,198 virulent and temperate phage genomes from the feces. Hierarchical cluster analyses show remarkable seasonal diet variations in gibbons. From high-fruit to high-leaf feeding period, the abundances of phage populations are seasonally fluctuated, especially driven by the increased abundance of virulent phages that kill the Lachnospiraceae hosts, and a decreased abundance of temperate phages that piggyback the Bacteroidaceae hosts. Functional profiling reveals an enrichment through horizontal gene transfers of toxin-antitoxin genes on temperate phage genomes in high-leaf season, potentially conferring benefits to their prokaryotic hosts. The phage-host ecological dynamics are driven by the coevolutionary processes which select for tail fiber and DNA primase genes on virulent and temperate phage genomes, respectively. Our results highlight complex phageome-microbiome interactions as a key feature of the gibbon gut microbial ecosystem responding to the seasonal diet.


Asunto(s)
Bacteriófagos , Hylobates , Hylobatidae , Animales , Estaciones del Año , Ecosistema , Viroma , Dieta , Bacteriófagos/genética , Frutas
8.
ISME J ; 18(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38365241

RESUMEN

Ammonia-oxidizing Nitrososphaeria are among the most abundant archaea on Earth and have profound impacts on the biogeochemical cycles of carbon and nitrogen. In contrast to these well-studied ammonia-oxidizing archaea (AOA), deep-branching non-AOA within this class remain poorly characterized because of a low number of genome representatives. Here, we reconstructed 128 Nitrososphaeria metagenome-assembled genomes from acid mine drainage and hot spring sediment metagenomes. Comparative genomics revealed that extant non-AOA are functionally diverse, with capacity for carbon fixation, carbon monoxide oxidation, methanogenesis, and respiratory pathways including oxygen, nitrate, sulfur, or sulfate, as potential terminal electron acceptors. Despite their diverse anaerobic pathways, evolutionary history inference suggested that the common ancestor of Nitrososphaeria was likely an aerobic thermophile. We further surmise that the functional differentiation of Nitrososphaeria was primarily shaped by oxygen, pH, and temperature, with the acquisition of pathways for carbon, nitrogen, and sulfur metabolism. Our study provides a more holistic and less biased understanding of the diversity, ecology, and deep evolution of the globally abundant Nitrososphaeria.


Asunto(s)
Amoníaco , Archaea , Amoníaco/metabolismo , Temperatura , Archaea/genética , Archaea/metabolismo , Oxidación-Reducción , Nitrógeno/metabolismo , Azufre/metabolismo , Concentración de Iones de Hidrógeno , Filogenia
9.
Environ Microbiol ; 15(9): 2431-44, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23574280

RESUMEN

In an attempt to link the microbial community composition and function in mine tailings to the generation of acid mine drainage, we simultaneously explored the geochemistry and microbiology of six tailings collected from a lead/zinc mine, i.e. primary tailings (T1), slightly acidic tailings (T2), extremely acidic tailings (T3, T4 and T5) and orange-coloured oxidized tailings (T6). Geochemical results showed that the six tailings (from T1 to T6) likely represented sequential stages of the acidification process of the mine tailings. 16S rRNA pyrosequencing revealed a contrasting microbial composition between the six tailings: Proteobacteria-related sequences dominated T1-T3 with relative abundance ranging from 56 to 93%, whereas Ferroplasma-related sequences dominated T4-T6 with relative abundance ranging from 28 to 58%. Furthermore, metagenomic analysis of the microbial communities of T2 and T6 indicated that the genes encoding key enzymes for microbial carbon fixation, nitrogen fixation and sulfur oxidation in T2 were largely from Thiobacillus and Acidithiobacillus, Methylococcus capsulatus, and Thiobacillus denitrificans respectively; while those in T6 were mostly identified in Acidithiobacillus and Leptospirillum, Acidithiobacillus and Leptospirillum, and Acidithiobacillus respectively. The microbial communities in T2 and T6 harboured more genes suggesting diverse metabolic capacities for sulfur oxidation/heavy metal detoxification and tolerating low pH respectively.


Asunto(s)
Ácidos/química , Bacterias/clasificación , Bacterias/genética , Biodiversidad , Minería , Bacterias/efectos de los fármacos , Bacterias/metabolismo , Contaminantes Ambientales/toxicidad , Genes Bacterianos/genética , Plomo/química , Plomo/metabolismo , ARN Ribosómico 16S/genética , Zinc/química , Zinc/metabolismo
10.
Biotechnol Bioeng ; 110(7): 1903-12, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23436222

RESUMEN

This study proposed a nonwoven hybrid bioreactor (NWHBR) in which the nonwoven fabric played dual roles as a biofilm carrier and membrane-like separation of the flocculent sludge in the reactor. The results of long-term monitoring demonstrated that the NWHBR could achieve simultaneous nitrification and denitrification (SND), with nearly complete ammonium removal and 80% removal of total nitrogen. The biofilm attached to the nonwoven fabric removed 27% of the chemical oxygen demand (COD) and 36% of the nitrate in the reactor, an enhanced elimination of nutrients that was attributed to the increased mass transfer within the biofilm due to permeate drag. The results of batch experiments showed that the flocculent sludge played a more dominant role in nitrification and denitrification (79% and 61%, respectively) than the biofilm (21% and 36%, respectively). The batch experiments also revealed that the enforced mass transfer, with an effluent recirculation rate of 4.3 L/m(2)h (which was the same as the flux during the reactor's long-term operation), improved the denitrification rate by 58% (i.e., from 9.0 to 14.2 mg-NO(3)(-)-N/h). Pyrosequencing of the 16S rRNA gene amplification revealed a high microbial diversity in both the flocculent sludge and biofilm, with Proteobacteria, Bacteroidetes and Chloroflexi as the dominant groups. A phylogenetic (P) test indicated that the NWHBR contained phylogenetically distinct microbial communities: those in the biofilm differed from those in the flocculent sludge. However, the communities on the exterior and interior of the biofilm were more similar to each other. Due to its good SND performance, low physical back-washing frequency and low air-to-water ratio, the NWHBR represents an attractive alternative for the wider application of either low-cost membrane bioreactors or biofilm reactors.


Asunto(s)
Bacterias/metabolismo , Reactores Biológicos/microbiología , Desnitrificación , Nitrificación , Aguas del Alcantarillado/microbiología , Compuestos de Amonio/metabolismo , Bacterias/clasificación , Bacterias/genética , Biodiversidad , Análisis de la Demanda Biológica de Oxígeno , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Nitratos/metabolismo , Nitrógeno/metabolismo , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
11.
J Hazard Mater ; 447: 130774, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-36641850

RESUMEN

Acid mine drainage (AMD) is a worldwide environmental problem, yet bioremediation is hampered by a limited knowledge of the reductive microbial processes in the AMD ecosystem. Here, we generate extensive metagenome and geochemical datasets to investigate how microbial populations and metabolic capacities driving major element cycles are structured in a highly stratified, AMD overlaying tailings environment. The results demonstrated an explicit depth-dependent differentiation of microbial community composition and function profiles between the surface and deeper tailings layers, paralleling the dramatic shifts in major physical and geochemical properties. Specifically, key genes involved in sulfur and iron oxidation were significantly enriched in the surface tailings, whereas those associated with reductive nitrogen, sulfur, and iron processes were enriched in the deeper layers. Genome-resolved metagenomics retrieved 406 intermediate or high-quality genomes spanning 26 phyla, including major new groups (e.g., Patescibacteria and DPANN). Metabolic models involving nitrogen, sulfur, iron, and carbon cycles were proposed based on the functional potentials of the abundant microbial genomes, emphasizing syntrophy and the importance of lesser-known taxa in the degradation of complex carbon compounds. These results have implications for in situ AMD bioremediation.


Asunto(s)
Metagenómica , Microbiota , Ácidos , Hierro , Metagenoma , Nitrógeno/metabolismo , Azufre
12.
Plants (Basel) ; 12(6)2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36987094

RESUMEN

Understanding the mechanisms of biological invasion is critical to biodiversity protection. Previous studies have produced inconsistent relationships between native species richness and invasibility, referred to as the invasion paradox. Although facilitative interactions among species have been proposed to explain the non-negative diversity-invasibility relationship, little is known about the facilitation of plant-associated microbes in invasions. We established a two-year field biodiversity experiment with a native plant species richness gradient (1, 2, 4, or 8 species) and analyzed the effects of community structure and network complexity of leaf bacteria on invasion success. Our results indicated a positive relationship between invasibility and network complexity of leaf bacteria of the invader. Consistent with previous studies, we also found that native plant species richness increased the leaf bacterial diversity and network complexity. Moreover, the results of the leaf bacteria community assembly of the invader suggested that the complex bacteria community resulted from higher native diversity rather than higher invader biomass. We concluded that increased leaf bacterial network complexity along the native plant diversity gradient likely facilitated plant invasion. Our findings provided evidence of a potential mechanism by which microbes may affect the plant community invasibility, hopefully helping to explain the non-negative relationship between native diversity and invasibility.

13.
NPJ Biofilms Microbiomes ; 9(1): 21, 2023 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-37085482

RESUMEN

Wild animals may encounter multiple challenges especially food shortage and altered diet composition in their suboptimal ranges. Yet, how the gut microbiome responds to dietary changes remains poorly understood. Prior studies on wild animal microbiomes have typically leaned upon relatively coarse dietary records and individually unresolved fecal samples. Here, we conducted a longitudinal study integrating 514 time-series individually recognized fecal samples with parallel fine-grained dietary data from two Skywalker hoolock gibbon (Hoolock tianxing) groups populating high-altitude mountainous forests in western Yunnan Province, China. 16S rRNA gene amplicon sequencing showed a remarkable seasonal fluctuation in the gibbons' gut microbial community structure both across individuals and between the social groups, especially driven by the relative abundances of Lanchnospiraceae and Oscillospiraceae associated with fluctuating consumption of leaf. Metagenomic functional profiling revealed that diverse metabolisms associated with cellulose degradation and short-chain fatty acids (SCFAs) production were enriched in the high-leaf periods possibly to compensate for energy intake. Genome-resolved metagenomics further enabled the resolving metabolic capacities associated with carbohydrate breakdown among community members which exhibited a high degree of functional redundancy. Our results highlight a taxonomically and functionally sensitive gut microbiome actively responding to the seasonally shifting diet, facilitating the survival and reproduction of the endangered gibbon species in their suboptimal habitats.


Asunto(s)
Microbioma Gastrointestinal , Hylobates , Animales , Estaciones del Año , ARN Ribosómico 16S/genética , Estudios Longitudinales , China , Dieta
14.
Nat Rev Microbiol ; 20(4): 219-235, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34754082

RESUMEN

A wide array of microorganisms, including many novel, phylogenetically deeply rooted taxa, survive and thrive in extreme environments. These unique and reduced-complexity ecosystems offer a tremendous opportunity for studying the structure, function and evolution of natural microbial communities. Marker gene surveys have resolved patterns and ecological drivers of these extremophile assemblages, revealing a vast uncultured microbial diversity and the often predominance of archaea in the most extreme conditions. New omics studies have uncovered linkages between community function and environmental variables, and have enabled discovery and genomic characterization of major new lineages that substantially expand microbial diversity and change the structure of the tree of life. These efforts have significantly advanced our understanding of the diversity, ecology and evolution of microorganisms populating Earth's extreme environments, and have facilitated the exploration of microbiota and processes in more complex ecosystems.


Asunto(s)
Bacterias , Microbiota , Archaea/genética , Bacterias/genética , Ambientes Extremos
15.
Chemosphere ; 296: 133995, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35176304

RESUMEN

Estuaries are one of the most crucial areas for the transformation and burial of terrestrial organic carbon (TerrOC), playing an important role in the global carbon cycle. While the transformation and degradation of TerrOC are mainly driven by microorganisms, the specific taxa and degradation processes involved remain largely unknown in estuaries. We collected surface sediments from 14 stations along the longitudinal section of the Pearl River Estuary (PRE), P. R. China. By combining analytical chemistry, metagenomics, and bioinformatics methods, we analyzed composition, source and degradation pathways of lignin/lignin-derived aromatic fragments and their potential decomposers in these samples. A diversity of bacterial and archaeal taxa, mostly those from Proteobacteria (Deltaproteobacteria, Gammaproteobacteria etc.), including some lineages (e.g., Nitrospria, Polyangia, Tectomicrobia_uc) not previously implicated in lignin degradation, were identified as potential polymeric lignin or its aromatic fragments degraders. The abundance of lignin degradation pathways genes exhibited distinct spatial distribution patterns with the area adjacent to the outlet of Modaomen as a potential degradation hot zone and the Syringyl lignin fragments, 3,4-PDOG, and 4,5-PDOG pathways as the primary potential lignin aromatic fragments degradation processes. Notably, the abundance of ferulic acid metabolic pathway genes exhibited significant correlations with degree of lignin oxidation and demethylation/demethoxylization and vegetation source. Additionally, the abundance of 2,3-PDOG degradation pathways genes also showed a positive significant correlation with degree of lignin oxidation. Our study provides a meaningful insight into the microbial ecology of TerrOC degradation in the estuary.


Asunto(s)
Estuarios , Ríos , Archaea/genética , Bacterias/genética , Carbono/análisis , China , Sedimentos Geológicos/microbiología , Lignina , Ríos/microbiología
16.
Appl Environ Microbiol ; 77(15): 5540-4, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21705549

RESUMEN

Analysis of spatial and temporal variations in the microbial community in the abandoned tailings impoundment of a Pb-Zn mine revealed distinct microbial populations associated with the different oxidation stages of the tailings. Although Acidithiobacillus ferrooxidans and Leptospirillum spp. were consistently present in the acidic tailings, acidophilic archaea, mostly Ferroplasma acidiphilum, were predominant in the oxidized zones and the oxidation front, indicating their importance to generation of acid mine drainage.


Asunto(s)
Acidithiobacillus/crecimiento & desarrollo , Archaea/crecimiento & desarrollo , Minería , Microbiología del Suelo , Acidithiobacillus/clasificación , Acidithiobacillus/genética , Ácidos , Archaea/clasificación , Archaea/genética , Técnicas de Tipificación Bacteriana , Contaminantes Ambientales , Residuos Industriales , Plomo , Consorcios Microbianos , Datos de Secuencia Molecular , Oxidación-Reducción , Filogenia , ARN Ribosómico 16S/genética , Microbiología del Agua , Zinc
17.
Methods Mol Biol ; 2242: 139-152, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33961222

RESUMEN

Assembly of metagenomic sequence data into microbial genomes is of critical importance for disentangling community complexity and unraveling the functional capacity of microorganisms. The rapid development of sequencing technology and novel assembly algorithms have made it possible to reliably reconstruct hundreds to thousands of microbial genomes from raw sequencing reads through metagenomic assembly. In this chapter, we introduce a routinely used metagenomic assembly workflow including read quality filtering, assembly, contig/scaffold binning, and postassembly check for genome completeness and contamination. We also describe a case study to reconstruct near-complete microbial genomes from metagenomes using our workflow.


Asunto(s)
Metagenoma , Metagenómica , Análisis de Secuencia de ADN , Bases de Datos Genéticas , Secuenciación de Nucleótidos de Alto Rendimiento , Filogenia , Proyectos de Investigación , Programas Informáticos , Flujo de Trabajo
18.
Genes (Basel) ; 11(12)2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33302493

RESUMEN

Heavy metal resistance is more than the tolerance one has towards a particular music genera [...].


Asunto(s)
Bacterias/genética , Bacterias/metabolismo , Farmacorresistencia Bacteriana , Metales Pesados/metabolismo , Biodegradación Ambiental
19.
Front Microbiol ; 11: 612257, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33408709

RESUMEN

Recent genome-resolved metagenomic analyses of microbial communities from diverse environments have led to the discovery of many novel lineages that significantly expand the phylogenetic breadth of Archaea. Here, we report the genomic characterization of a new archaeal family based on five metagenome-assembled genomes retrieved from acid mine drainage sediments. Phylogenomic analyses placed these uncultivated archaea at the root of the candidate phylum Parvarchaeota, which expand this lesser-known phylum into two family levels. Genes involved in environmental adaptation and carbohydrate and protein utilization were identified in the ultra-small genomes (estimated size 0.53-0.76 Mb), indicating a survival strategy in this harsh environment (low pH and high heavy metal content). The detection of genes with homology to sulfocyanin suggested a potential involvement in iron cycling. Nevertheless, the absence of the ability to synthesize amino acids and nucleotides implies that these archaea may acquire these biomolecules from the environment or other community members. Applying evolutionary history analysis to Parvarchaeota suggested that members of the two families could broaden their niches by acquiring the potentials of utilizing different substrates. This study expands our knowledge of the diversity, metabolic capacity, and evolutionary history of the Parvarchaeota.

20.
Microbiome ; 8(1): 89, 2020 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-32517753

RESUMEN

BACKGROUND: Recent studies have significantly expanded our knowledge of viral diversity and functions in the environment. Exploring the ecological relationships between viruses, hosts, and the environment is a crucial first step towards a deeper understanding of the complex and dynamic interplays among them. RESULTS: Here, we obtained extensive 16S rRNA gene amplicon, metagenomics sequencing, and geochemical datasets from different depths of two highly stratified sulfidic mine tailings cores with steep geochemical gradients especially pH, and explored how variations in viral community composition and functions were coupled to the co-existing prokaryotic assemblages and the varying environmental conditions. Our data showed that many viruses in the mine tailings represented novel genera, based on gene-sharing networks. Siphoviridae, Podoviridae, and Myoviridae dominated the classified viruses in the surface tailings and deeper layers. Both viral richness and normalized coverage increased with depth in the tailings cores and were significantly correlated with geochemical properties, for example, pH. Viral richness was also coupled to prokaryotic richness (Pearson's r = 0.65, P = 0.032). The enrichment of prophages in the surface mine tailings suggested a preference of lysogenic viral lifestyle in more acidic conditions. Community-wide comparative analyses clearly showed that viruses in the surface tailings encoded genes mostly with unknown functions while viruses in the deeper layers contained genes mainly annotated as conventional functions related to metabolism and structure. Notably, significantly abundant assimilatory sulfate reduction genes were identified from the deeper tailings layers and they were widespread in viruses predicted to infect diverse bacterial phyla. CONCLUSIONS: Overall, our results revealed a depth-related distribution of viral populations in the extreme and heterogeneous tailings system. The viruses may interact with diverse hosts and dynamic environmental conditions and likely play a role in the functioning of microbial community and modulate sulfur cycles in situ. Video Abstract.


Asunto(s)
Ácidos , Bacterias/virología , Metagenómica , Minería , Sulfuros/metabolismo , Virus/genética , Virus/aislamiento & purificación , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Concentración de Iones de Hidrógeno , ARN Ribosómico 16S/genética , Virus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA