Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Microbiol ; 23(4): 1959-1971, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33145903

RESUMEN

The assemblage of root-associated microorganisms plays important roles in improving their capability to adapt to environmental stress. Metal(loid) hyperaccumulators exhibit disparate adaptive capability compared to that of non-hyperaccumulators when faced with elevated contents of metal(loid)s. However, knowledge of the assemblage of root microbes of hyperaccumulators and their ecological roles in plant growth is still scarce. The present study used Pteris vittata as a model plant to study the microbial assemblage and its beneficial role in plant growth. We demonstrated that the assemblage of microbes from the associated bulk soil to the root compartment was based on their lifestyles. We used metagenomic analysis and identified that the assembled microbes were primarily involved in root-microbe interactions in P. vittata root. Notably, we identified that the assembled root microbiome played an important role in As requisition, which promoted the fitness and growth of P. vittata. This study provides new insights into the root microbiome and potential valuable knowledge to understand how the root microbiome contributes to the fitness of its host.


Asunto(s)
Arsénico , Microbiota , Pteris , Contaminantes del Suelo , Biodegradación Ambiental , Raíces de Plantas , Contaminantes del Suelo/análisis
2.
J Hazard Mater ; 475: 134834, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38889460

RESUMEN

Organophosphate esters (OPEs) are widely used commercial additives, but their environmental persistence and toxicity raise serious concerns necessitating associated remediation strategies. Although there are various existing technologies for OPE removal, comprehensive screening for them is urgently needed to guide further research. This review provides a comprehensive overview of the techniques used to remove OPEs from soil and water, including their related influencing factors, removal mechanisms/degradation pathways, and practical applications. Based on an analysis of the latest literature, we concluded that (1) methods used to decontaminate OPEs include adsorption, hydrolysis, photolysis, advanced oxidation processes (AOPs), activated sludge processes, and microbial degradation; (2) factors such as the quantity/characteristics of the catalysts/additives, pH value, inorganic ion concentration, and natural organic matter (NOM) affect OPE removal; (3) primary degradation mechanisms involve oxidation induced by reactive oxygen species (ROS) (including •OH and SO4•-) and degradation pathways include hydrolysis, hydroxylation, oxidation, dechlorination, and dealkylation; (5) interference from the pH value, inorganic ion and the presence of NOM may limit complete mineralization during the treatment, impacting practical application of OPE removal techniques. This review provides guidance on existing and potential OPE removal methods, providing a theoretical basis and innovative ideas for developing more efficient and environmentally friendly techniques to treat OPEs in soil and water.


Asunto(s)
Restauración y Remediación Ambiental , Ésteres , Organofosfatos , Contaminantes del Suelo , Contaminantes Químicos del Agua , Ésteres/química , Contaminantes del Suelo/química , Contaminantes Químicos del Agua/química , Restauración y Remediación Ambiental/métodos , Organofosfatos/química , Organofosfatos/toxicidad , Purificación del Agua/métodos
3.
J Hazard Mater ; 460: 132426, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37683352

RESUMEN

The impact of primary metabolites of organophosphate triesters (tri-OPEs), namely, organophosphate diesters (di-OPEs), on the ecology, environment, and humans cannot be ignored. While extensive studies have been conducted on tri-OPEs, research on the environmental occurrence, toxicity, and health risks of di-OPEs is still in the preliminary stage. Understanding the current research status of di-OPEs is crucial for directing future investigations on the production, distribution, and risks associated with environmental organophosphate esters (OPEs). This paper specifically reviews the metabolization process from tri-OPEs to di-OPEs and the occurrence of di-OPEs in environmental media and organisms, proposes typical di-OPEs in different media, and classifies their toxicological and epidemiological findings. Through a comprehensive analysis, six di-OPEs were identified as typical di-OPEs that require prioritized research. These include di-n-butyl phosphate (DNBP), bis(2-butoxyethyl) phosphate (BBOEP), bis(1,3-dichloro-2-propyl) phosphate (BDCIPP), bis(2-chloroethyl) phosphate (BCEP), bis(1-chloro-2-propyl) phosphate (BCIPP), and diphenyl phosphate (DPHP). This review provides new insights for subsequent toxicological studies on these typical di-OPEs, aiming to improve our understanding of their current status and provide guidance and ideas for research on the toxicity and health risks of di-OPEs. Ultimately, this review aims to enhance the risk warning system of environmental OPEs.


Asunto(s)
Ecología , Fosfatos , Humanos , Estudios Epidemiológicos , Organofosfatos/toxicidad
4.
Environ Int ; 168: 107482, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35998411

RESUMEN

As a major alternative to traditional brominated flame retardants (BFRs), decabromodiphenyl ethane (DBDPE) is widely used and has been commonly detected in various environmental media and organisms. Few previous studies have focused on DBDPE-induced locomotion neurotoxicity, and the exact molecular mechanisms and related health risks remain unclear. In this study, we first analyzed the locomotion indicators of nematodes following DBDPE exposure, demonstrated that DBDPE caused locomotion neurotoxicity, and identified that a series of the transthyretin (TTR)-like genes participated in the regulation of nematode motility by transcriptomic analysis, gene transcription validation and TTR-like mutant verification. Subsequently, this study demonstrated that DBDPE exacerbated amyloid-beta (Aß) deposition by repressing TTR/TTR-like gene transcription based on Alzheimer's disease (AD) model nematodes and human SH-SY5Y cells following DBDPE exposure and further revealed that DBDPE reduced the binding between TTR and Aß by competing with the strand G region sites on the TTR/TTR-like protein, ultimately exacerbating Aß deposition and the risk of AD. In short, our study demonstrated that DBDPE induced locomotion neurotoxicity and potential AD risks through intensifying Aß deposition by inhibiting TTR/TTR-like proteins, providing reference support for risk management and policy formulation related to DBDPE and similarly structured novel BFRs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA