RESUMEN
Currently, there are no approved specific antiviral agents for novel coronavirus disease 2019 (COVID-19). In this study, 10 severe patients confirmed by real-time viral RNA test were enrolled prospectively. One dose of 200 mL of convalescent plasma (CP) derived from recently recovered donors with the neutralizing antibody titers above 1:640 was transfused to the patients as an addition to maximal supportive care and antiviral agents. The primary endpoint was the safety of CP transfusion. The second endpoints were the improvement of clinical symptoms and laboratory parameters within 3 d after CP transfusion. The median time from onset of illness to CP transfusion was 16.5 d. After CP transfusion, the level of neutralizing antibody increased rapidly up to 1:640 in five cases, while that of the other four cases maintained at a high level (1:640). The clinical symptoms were significantly improved along with increase of oxyhemoglobin saturation within 3 d. Several parameters tended to improve as compared to pretransfusion, including increased lymphocyte counts (0.65 × 109/L vs. 0.76 × 109/L) and decreased C-reactive protein (55.98 mg/L vs. 18.13 mg/L). Radiological examinations showed varying degrees of absorption of lung lesions within 7 d. The viral load was undetectable after transfusion in seven patients who had previous viremia. No severe adverse effects were observed. This study showed CP therapy was well tolerated and could potentially improve the clinical outcomes through neutralizing viremia in severe COVID-19 cases. The optimal dose and time point, as well as the clinical benefit of CP therapy, needs further investigation in larger well-controlled trials.
Asunto(s)
Betacoronavirus , Infecciones por Coronavirus/terapia , Neumonía Viral/terapia , Anticuerpos Neutralizantes/uso terapéutico , Anticuerpos Antivirales/uso terapéutico , COVID-19 , Prueba de COVID-19 , Técnicas de Laboratorio Clínico , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/fisiopatología , Femenino , Humanos , Inmunización Pasiva , Masculino , Persona de Mediana Edad , Pandemias , Neumonía Viral/diagnóstico , Neumonía Viral/fisiopatología , ARN Viral , SARS-CoV-2 , Carga Viral , Sueroterapia para COVID-19RESUMEN
Importance: Although effective vaccines against COVID-19 have been developed, additional vaccines are still needed. Objective: To evaluate the efficacy and adverse events of 2 inactivated COVID-19 vaccines. Design, Setting, and Participants: Prespecified interim analysis of an ongoing randomized, double-blind, phase 3 trial in the United Arab Emirates and Bahrain among adults 18 years and older without known history of COVID-19. Study enrollment began on July 16, 2020. Data sets used for the interim analysis of efficacy and adverse events were locked on December 20, 2020, and December 31, 2020, respectively. Interventions: Participants were randomized to receive 1 of 2 inactivated vaccines developed from SARS-CoV-2 WIV04 (5 µg/dose; n = 13 459) and HB02 (4 µg/dose; n = 13 465) strains or an aluminum hydroxide (alum)-only control (n = 13 458); they received 2 intramuscular injections 21 days apart. Main Outcomes and Measures: The primary outcome was efficacy against laboratory-confirmed symptomatic COVID-19 14 days following a second vaccine dose among participants who had no virologic evidence of SARS-CoV-2 infection at randomization. The secondary outcome was efficacy against severe COVID-19. Incidence of adverse events and reactions was collected among participants who received at least 1 dose. Results: Among 40 382 participants randomized to receive at least 1 dose of the 2 vaccines or alum-only control (mean age, 36.1 years; 32 261 [84.4%] men), 38 206 (94.6%) who received 2 doses, contributed at least 1 follow-up measure after day 14 following the second dose, and had negative reverse transcriptase-polymerase chain reaction test results at enrollment were included in the primary efficacy analysis. During a median (range) follow-up duration of 77 (1-121) days, symptomatic COVID-19 was identified in 26 participants in the WIV04 group (12.1 [95% CI, 8.3-17.8] per 1000 person-years), 21 in the HB02 group (9.8 [95% CI, 6.4-15.0] per 1000 person-years), and 95 in the alum-only group (44.7 [95% CI, 36.6-54.6] per 1000 person-years), resulting in a vaccine efficacy, compared with alum-only, of 72.8% (95% CI, 58.1%-82.4%) for WIV04 and 78.1% (95% CI, 64.8%-86.3%) for HB02 (P < .001 for both). Two severe cases of COVID-19 occurred in the alum-only group and none occurred in the vaccine groups. Adverse reactions 7 days after each injection occurred in 41.7% to 46.5% of participants in the 3 groups; serious adverse events were rare and similar in the 3 groups (WIV04: 64 [0.5%]; HB02: 59 [0.4%]; alum-only: 78 [0.6%]). Conclusions and Relevance: In this prespecified interim analysis of a randomized clinical trial, treatment of adults with either of 2 inactivated SARS-CoV-2 vaccines significantly reduced the risk of symptomatic COVID-19, and serious adverse events were rare. Data collection for final analysis is pending. Trial Registration: ClinicalTrials.gov Identifier: NCT04510207; Chinese Clinical Trial Registry: ChiCTR2000034780.
Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , Inmunogenicidad Vacunal , Adulto , COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/efectos adversos , Conjuntos de Datos como Asunto , Método Doble Ciego , Femenino , Humanos , Inyecciones Intramusculares , Masculino , Persona de Mediana Edad , Medio Oriente , Vacunas de Productos Inactivados/inmunologíaRESUMEN
Poor immune responses to inactivated influenza vaccine can be improved by effective and safe adjuvants to increase antibody titers and cellular protective response. In our study, AddaVax and PolyI:C combined adjuvant (AP adjuvant) were used for influenza vaccine development. After immunizing BALB/c mice and Wistar rats intramuscularly, Split inactivated H3N2 vaccine adjuvanted with AP elicited higher serum hemagglutination-inhibition antibodies and IgG titers. We demonstrated that AP induced a transient innate immune cytokines production at the injection site, induced H3N2 uptake by DCs, increased recruitment of monocytes and DCs in LNs, and promoted H3N2 vaccine migration; AP facilitated vaccines to induce a vigorous adaptive immune response. Besides, AP showed good safety as shown by lymph nodes (LNs) size, spleens index of BALB/c mice, and weight changes and C-reaction protein level of BALB/c mice and Wistar rats after repeated administration of high-dose vaccine with or without adjuvant. These findings indicate that AP is a potential novel adjuvant and can be used as a safe and effective adjuvant for MDCK-based influenza inactivated vaccine to induce cellular and antibody protective response.
Asunto(s)
Vacunas contra la Influenza , Infecciones por Orthomyxoviridae , Adyuvantes Inmunológicos , Animales , Anticuerpos Antivirales , Inmunidad , Subtipo H3N2 del Virus de la Influenza A , Ratones , Ratones Endogámicos BALB C , Polisorbatos , Ratas , Ratas Wistar , EscualenoRESUMEN
Importance: A vaccine against coronavirus disease 2019 (COVID-19) is urgently needed. Objective: To evaluate the safety and immunogenicity of an investigational inactivated whole-virus COVID-19 vaccine in China. Interventions: In the phase 1 trial, 96 participants were assigned to 1 of the 3 dose groups (2.5, 5, and 10 µg/dose) and an aluminum hydroxide (alum) adjuvant-only group (n = 24 in each group), and received 3 intramuscular injections at days 0, 28, and 56. In the phase 2 trial, 224 adults were randomized to 5 µg/dose in 2 schedule groups (injections on days 0 and 14 [n = 84] vs alum only [n = 28], and days 0 and 21 [n = 84] vs alum only [n = 28]). Design, Setting, and Participants: Interim analysis of ongoing randomized, double-blind, placebo-controlled, phase 1 and 2 clinical trials to assess an inactivated COVID-19 vaccine. The trials were conducted in Henan Province, China, among 96 (phase 1) and 224 (phase 2) healthy adults aged between 18 and 59 years. Study enrollment began on April 12, 2020. The interim analysis was conducted on June 16, 2020, and updated on July 27, 2020. Main Outcomes and Measures: The primary safety outcome was the combined adverse reactions 7 days after each injection, and the primary immunogenicity outcome was neutralizing antibody response 14 days after the whole-course vaccination, which was measured by a 50% plaque reduction neutralization test against live severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Results: Among 320 patients who were randomized (mean age, 42.8 years; 200 women [62.5%]), all completed the trial up to 28 days after the whole-course vaccination. The 7-day adverse reactions occurred in 3 (12.5%), 5 (20.8%), 4 (16.7%), and 6 (25.0%) patients in the alum only, low-dose, medium-dose, and high-dose groups, respectively, in the phase 1 trial; and in 5 (6.0%) and 4 (14.3%) patients who received injections on days 0 and 14 for vaccine and alum only, and 16 (19.0%) and 5 (17.9%) patients who received injections on days 0 and 21 for vaccine and alum only, respectively, in the phase 2 trial. The most common adverse reaction was injection site pain, followed by fever, which were mild and self-limiting; no serious adverse reactions were noted. The geometric mean titers of neutralizing antibodies in the low-, medium-, and high-dose groups at day 14 after 3 injections were 316 (95% CI, 218-457), 206 (95% CI, 123-343), and 297 (95% CI, 208-424), respectively, in the phase 1 trial, and were 121 (95% CI, 95-154) and 247 (95% CI, 176-345) at day 14 after 2 injections in participants receiving vaccine on days 0 and 14 and on days 0 and 21, respectively, in the phase 2 trial. There were no detectable antibody responses in all alum-only groups. Conclusions and Relevance: In this interim report of the phase 1 and phase 2 trials of an inactivated COVID-19 vaccine, patients had a low rate of adverse reactions and demonstrated immunogenicity; the study is ongoing. Efficacy and longer-term adverse event assessment will require phase 3 trials. Trial Registration: Chinese Clinical Trial Registry Identifier: ChiCTR2000031809.
Asunto(s)
Betacoronavirus/inmunología , Infecciones por Coronavirus/prevención & control , Inmunogenicidad Vacunal , Pandemias/prevención & control , Neumonía Viral/prevención & control , Vacunas Virales/inmunología , Adyuvantes Inmunológicos/administración & dosificación , Adyuvantes Inmunológicos/efectos adversos , Adolescente , Adulto , Hidróxido de Aluminio/administración & dosificación , Hidróxido de Aluminio/efectos adversos , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Betacoronavirus/genética , COVID-19 , Vacunas contra la COVID-19 , Infecciones por Coronavirus/inmunología , Relación Dosis-Respuesta Inmunológica , Método Doble Ciego , Femenino , Humanos , Inyecciones Intramusculares , Masculino , Neumonía Viral/inmunología , Propiolactona , SARS-CoV-2 , Vacunas de Productos Inactivados/inmunología , Vacunas Virales/administración & dosificación , Vacunas Virales/efectos adversos , Adulto JovenRESUMEN
The resurgence of pertussis in vaccinated communities may be related to the reduced long-term immunity induced by acellular pertussis vaccines. Therefore, developing improved pertussis vaccine candidates that could induce strong Th1 or Th17 cellular immunity is an urgent need. The use of new adjuvants may well meet this requirement. In this research, we developed a novel adjuvant candidate by combining liposome and QS-21 adjuvant. Adjuvant activity, protective efficacy, the level of neutralizing antibody against PT, and the resident memory T (TRM) cells in lung tissue after vaccination were studied. We then performed B. pertussis respiratory challenge in mice after they received vaccination with traditional aluminum hydroxide and the novel adjuvant combination. Results showed that the liposome + QS-21 adjuvant group had a rapid antibody and higher antibody (PT, FHA, Fim) level, induced anti-PT neutralizing antibody and recruited more IL-17A-secreting CD4+ TRM cells along with IL-17A-secreting CD8+ TRM cells in mice, which provided robust protection against B. pertussis infection. These results provide a key basis for liposome + QS-21 adjuvant as a promising adjuvant candidate for developing an acellular pertussis vaccine that elicits protective immunity against pertussis.
RESUMEN
Influenza prevention and control has been one of the biggest challenges encountered in the public health domain. The vaccination against influenza plays a pivotal role in the prevention of influenza, particularly for the elderly and small children. According to the epidemiology of influenza in China, the nation is under a heavy burden of this disease. Therefore, as a contribution to the prevention and control of influenza in China through the provision of relevant information, the present report discusses the production and batch issuance of the influenza vaccine, analysis of the vaccination status and vaccination rate of the influenza vaccine, and the development trend of the influenza vaccine in China.
RESUMEN
Viruses, bacteria, fungi, and several other pathogenic microorganisms usually infect the host via the surface cells of respiratory mucosa. Nasal vaccination could provide a strong mucosal and systemic immunity to combat these infections. The intranasal route of vaccination offers the advantage of easy accessibility over the injection administration. Therefore, nasal immunization is considered a promising strategy for disease prevention, particularly in the case of infectious diseases of the respiratory system. The development of a nasal vaccine, particularly the strategies of adjuvant and antigens design and optimization, enabling rapid induction of protective mucosal and systemic responses against the disease. In recent times, the development of efficacious nasal vaccines with an adequate safety profile has progressed rapidly, with effective handling and overcoming of the challenges encountered during the process. In this context, the present report summarizes the most recent findings regarding the strategies used for developing nasal vaccines as an efficient alternative to conventional vaccines.
RESUMEN
In influenza vaccine development, Madin-Darby canine kidney (MDCK) cells provide multiple advantages, including large-scale production and egg independence. Several cell-based influenza vaccines have been approved worldwide. We cultured H5N1 virus in a serum-free MDCK cell suspension. The harvested virus was manufactured into vaccines after inactivation and purification. The vaccine effectiveness was assessed in the Wuhan Institute of Biological Products BSL2 facility. The pre- and postvaccination mouse serum titers were determined using the microneutralization and hemagglutination inhibition tests. The immunological responses induced by vaccine were investigated using immunological cell classification, cytokine expression quantification, and immunoglobulin G (IgG) subtype classification. The protective effect of the vaccine in mice was evaluated using challenge test. Antibodies against H5N1 in rats lasted up to 8 months after the first dose. Compared with those of the placebo group, the serum titer of vaccinated mice increased significantly, Th1 and Th2 cells were activated, and CD8+ T cells were activated in two dose groups. Furthermore, the challenge test showed that vaccination reduced the clinical symptoms and virus titer in the lungs of mice after challenge, indicating a superior immunological response. Notably, early after vaccination, considerably increased interferon-inducible protein-10 (IP-10) levels were found, indicating improved vaccine-induced innate immunity. However, IP-10 is an adverse event marker, which is a cause for concern. Overall, in the case of an outbreak, the whole-virion H5N1 vaccine should provide protection.
RESUMEN
Safe and effective vaccines against SARS-CoV-2 for children are urgently needed. Here we aimed to assess the safety and immunogenicity of an inactivated COVID-19 vaccine candidate, WIBP-CorV, in participants aged 3-17 years. A randomized, double-blind, placebo-controlled, phase 1/2 clinical trial was conducted in Henan Province, China, in healthy children aged 3-17 years. 240 participants in phase 1 trial and 576 participants in phase 2 trial were randomly assigned to vaccine or control with an age de-escalation in three cohorts (3-5, 6-12 and 13-17 years) and dose-escalation in three groups (2.5, 5.0 and 10.0µg/dose), and received 3 intramuscular injections at day 0, 28, and 56. WIBP-CorV showed a promising safety profile with approximately 17% adverse reactions within 30 days after injection and no grade 3 or worse adverse events. The most common adverse reaction was injection site pain, followed by fever, which were mild and self-limiting. The geometric mean titers of neutralizing antibody ranged from 102.2 to 1065.5 in vaccinated participants at 28 days after the third vaccination, and maintained at a range of 14.3 to 218.2 at day 180 after the third vaccination. WIBP-CorV elicited significantly higher titers of neutralizing antibody in the cohort aged 3-5 years than the other two cohorts. There were no detectable antibody responses in all alum-only groups. Taken together, our data demonstrate that WIBP-CorV is safe and well tolerated at all tested doses in participants aged 3-17 years, and elicited robust humoral responses against SARS-CoV-2 lasted for at least 6 months after the third vaccination. This study is ongoing and is registered with www.chictr.org.cn, ChiCTR2000031809.
Asunto(s)
COVID-19 , Vacunas , Anticuerpos Neutralizantes , COVID-19/prevención & control , Vacunas contra la COVID-19/efectos adversos , Niño , Método Doble Ciego , Humanos , SARS-CoV-2RESUMEN
The immunity of patients who recover from coronavirus disease 2019 (COVID-19) could be long lasting but persist at a lower level. Thus, recovered patients still need to be vaccinated to prevent reinfection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or its mutated variants. Here, we report that the inactivated COVID-19 vaccine can stimulate immunity in recovered patients to maintain high levels of anti-receptor-binding domain (RBD) and anti-nucleocapsid protein (NP) antibody titers within 9 months, and high neutralizing activity against the prototype, Delta, and Omicron strains was observed. Nevertheless, the antibody response decreased over time, and the Omicron variant exhibited more pronounced resistance to neutralization than the prototype and Delta strains. Moreover, the intensity of the SARS-CoV-2-specific CD4+ T cell response was also increased in recovered patients who received COVID-19 vaccines. Overall, the repeated antigen exposure provided by inactivated COVID-19 vaccination greatly boosted both the potency and breadth of the humoral and cellular immune responses against SARS-CoV-2, effectively protecting recovered individuals from reinfection by circulating SARS-CoV-2 and its variants.
RESUMEN
BACKGROUND: We aimed to assess the safety and immunogenicity of an inactivated vaccine against COVID-19 in Chinese adults aged ≥18 years. METHODS: This is an ongoing randomized, double-blind, placebo-controlled, phase 1/2 clinical trial among healthy adults aged ≥18 years in Henan Province, China. Participants (n = 336 in 18-59 age group and n = 336 in ≥60 age group) were enrolled between April 12 and May 17 2020, and were equally randomized to receive vaccine or placebo (aluminum hydroxide adjuvant) in a three-dose schedule of 2·5, 5, or 10 µg on days 0, 28, and 56. Another 448 adults aged 18-59 years were equally allocated to four groups (a one-dose schedule of 10 µg, and two-dose schedules of 5 µg on days 0 and 14/21/28) and received vaccine or placebo (ratio 3:1 within each group). The primary outcomes were 7-day post-injection adverse reactions and neutralizing antibody titres on days 28 and 90 after the whole-course vaccination. Trial registration: www.chictr.org.cn #ChiCTR2000031809. FINDINGS: The 7-day adverse reactions occurred in 4·8% to 32·1% of the participants in various groups, and most adverse reactions were mild, transient, and self-limiting. Twenty participants reported 68 serious adverse events which were judged to be unrelated to the vaccine. The 90-day post-injection geometric mean titres of neutralizing antibody ranged between 87 (95% CI: 61-125) and 129 (99-169) for three-dose schedule among younger and older adults; 20 (14-27), 53 (38-75), and 44 (32-61) in 5 µg days 0 and 14/21/28 groups, respectively, and 7 (6-9) in one-dose 10 µg group. There were no detectable antibody responses in all placebo groups. INTERPRETATION: The inactivated vaccine against COVID-19 was well tolerated and immunogenic in both younger and older adults. The two-dose schedule of 5 µg on days 0 and 21/28 and three-dose schedules on days 0, 28, and 56 could be further evaluated for long-term safety and efficacy in the phase 3 trials.