Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Environ Res ; 216(Pt 2): 114565, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36243052

RESUMEN

Rotenone is a botanical pesticide and has long been used for control of insect pests and also as a natural piscicide for management of fish populations in many countries. Field application for pest control, however, often encounters the movement of rotenone into surface water due to spray drift or surface runoff after rainfall, which could potentially result in water pollution and unexpected death of fishes. To minimize its effect on freshwater and the problem of fish dying, one solution was to encapsulate rotenone in specific microspheres, limiting its release and reducing its toxicity since rotenone can be quickly degraded under sunlight. In this study, pH-responsive alginate-based microspheres were synthesized to encapsulating rotenone, which were designated as rotenone beads. The rotenone beads, along with alginate beads (devoid of rotenone) were characterized and evaluated for their responses to pH and effects on zebrafish. Results showed that the microspheres had high loading efficiency (4.41%, w/w) for rotenone, and rotenone beads well responded to solution pH levels. The cumulative release rates of rotenone from the beads were 27.91%, 42.72%, and 90.24% at pH 5.5, 7.0, and 9.0, respectively. Under acidic conditions, the rotenone release rate was lower due to hydrogen bonding. On the contrary, rotenone became more quickly released at the high pH due to intermolecular repulsion. The toxicity of rotenone beads to zebrafish and fish embryos at a pH of 5.5 was reduced by 2- and 4-fold than chemical rotenone. Since pH levels in most freshwater lakes, ponds, and streams vary from 6 to 8, rotenone release from the beads in such freshwater could be limited. Thus, the synthesized rotenone beads could be relatively safely used for pest control with limited effects on freshwater fishers.


Asunto(s)
Alginatos , Pez Cebra , Animales , Alginatos/química , Microesferas , Rotenona/toxicidad , Ácidos Hexurónicos/toxicidad , Ácidos Hexurónicos/química , Ácido Glucurónico/toxicidad , Ácido Glucurónico/química , Concentración de Iones de Hidrógeno
2.
Ecotoxicol Environ Saf ; 229: 113089, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34929506

RESUMEN

As a wildly used plant-derived insecticide, azadirachtin (AZA) is commonly reported as harmless to a range of beneficial insects. However, with the research on the effect of AZA against pollinators in recent years, various negative physiological effects on other Apidae species have been demonstrated. Thus to explore the safety of azadirachtin to Apis cerana cerana, the different physiological effects of sublethal concentration of azadirachtin on worker bees A.c.cerana has been studied. With the exposure of 5 mg·L-1 and 10 mg·L-1 azadirachtin for 5 d, the relative expression of Apidaecin, Abaecin and Lysosome genes in workers has decreased significantly at 1, 2,3 and 5 d, and the mRNA levels of Defensin 2 and Hymenoptaecin were also significantly inhibited by 10 mg·L-1 azadirachtin at each check point. Besides, the activity of midgut antioxidant enzymes Superoxide Dismutase (SOD) and Catalase (CAT) which are the first line of defence in antioxidant systems was not affected by AZA, the activity of Peroxidase (POD) showed a fluctuating pattern at 24 h and 48 h, while the activity of polyphenol oxidase (PPO) has significantly inhibited by AZA. However, through 16sRNA analysis it was observed that 5 mg·L-1 AZA did not affect the midgut microbiome colony composition and relative abundance, as well as its main function. Therefore, to a certain extent, azadirachtin is safe for workers, but we should pay more attention to the sublethal effect of AZA that also detrimental to the healthy development of the honeybee colony.


Asunto(s)
Himenópteros , Limoninas , Microbiota , Animales , Abejas , Inmunidad , Limoninas/toxicidad
3.
Pestic Biochem Physiol ; 173: 104778, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33771257

RESUMEN

Azadirachtin is a good growth inhibitor for Lepidopteran larvae, but its effect on the brain neurons, intestinal flora and intestinal contents caused by the growth inhibition mechanism has not been reported yet. This study explored the mechanism of azadirachtin on the growth and development of Spodoptera litura larvae and brain neurons through three aspects: intestinal pathology observation, intestinal flora sequencing, and intestinal content analysis. The results showed that the treatment of azadirachtin led to the pathological changes in the structure of the midgut and the goblet cells in the intestinal wall cells to undergo apoptosis. Changes in the host environment of the intestinal flora lead to changes in the abundance value of the intestinal flora, showing an increase in the abundance value of harmful bacteria such as Sphingomonas and Enterococcus, as well as an increase in the abundance value of excellent flora such as Lactobacillus and Bifidobacterium. Changes in the abundance of intestinal flora will result in changes in intestinal contents and metabolites. The test results show that after azadirachtin treatment, the alkane compounds in the intestinal contents of the larvae are greatly reduced, and the number of the long carbon chain and multi-branched hydrocarbon compounds is increased, unsaturated fatty acids, silicon­oxygen compounds and ethers. The production of similar substances indicates that azadirachtin has an inhibitory effect on digestive enzymes in the intestines, which results in the inhibition of substance absorption and energy transmission, and ultimately the inhibition of larval growth and brain neurons.


Asunto(s)
Contenido Digestivo , Microbioma Gastrointestinal , Animales , Encéfalo , Intestinos , Larva , Limoninas , Neuronas , Spodoptera
4.
J Asian Nat Prod Res ; 18(2): 125-33, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26479429

RESUMEN

A chemical investigation of the whole plant of Pronephrium megacuspe (Bak.) Holtt. led to the isolation of four flavonoids, pronephrones A-D (1-4), which were firstly reported. The chemical structures of four compounds were established using spectroscopic methods. These isolates were further evaluated for cytotoxicity to ovarian cells of Spodoptera litura Fabricius.


Asunto(s)
Citotoxinas/aislamiento & purificación , Medicamentos Herbarios Chinos/aislamiento & purificación , Flavonoides/aislamiento & purificación , Plantas Medicinales/química , Animales , Citotoxinas/química , Citotoxinas/farmacología , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Femenino , Flavonoides/química , Flavonoides/farmacología , Moscas Domésticas , Insecticidas/química , Estructura Molecular , Resonancia Magnética Nuclear Biomolecular , Ovario/citología , Ovario/efectos de los fármacos , Spodoptera/citología , Spodoptera/efectos de los fármacos
5.
ACS Nano ; 18(37): 25425-25445, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39215720

RESUMEN

Metal-organic framework nanoparticles (MOF NPs) have received much attention for their potential use in nanopesticides. However, little is known about the potential health and environmental risks associated with these materials. In this study, the toxicological responses of zebrafish exposed to five MOF NPs for short and long periods of time were evaluated. The acute toxicity results showed that the toxicity of the five MOF NPs to zebrafish embryos and adult zebrafish was in the order of Cu-MOF > ZIF-90 > ZIF-8 > Fe-MOF > Zr-MOF. Histopathological analysis revealed that ZIF-8, ZIF-90, and Cu-MOF NPs caused liver swelling and vacuolization in zebrafish. The cellular ultrastructure showed that ZIF-8, ZIF-90, and Cu-MOF NPs severely damaged the mitochondrial structure in intestinal epithelial cells and liver cells. The 16S rDNA sequencing data showed that all five MOF NPs significantly altered the dominant microorganisms in the zebrafish intestine. The microbial markers of intestinal inflammation, Proteobacteria (Aeromonas, Plesiomonas, and Legionella), were significantly increased in the Fe-MOF, ZIF-8, Zr-MOF, and Cu-MOF treatment groups. Metabolomics results indicated that the levels of inflammatory promoting factors (Leukotriene E4, 20-hydroxyeicosatetraenoic acid) in arachidonic acid metabolism were decreased, and the levels of inflammatory suppressing factors (8,9-epoxyeicosatrienoic acid) were increased. Metabolites related to oxidative stress, such as glutamine, pyridoxamine, and l-glutamic acid in vitamin B6 metabolism and other signaling pathways, were significantly reduced. Overall, these results suggest that the different MOF NPs had widely varying toxicity to zebrafish, and further attention should be paid to the toxicity of MOF NPs in the real environment.


Asunto(s)
Microbioma Gastrointestinal , Hígado , Estructuras Metalorgánicas , Pez Cebra , Animales , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Nanopartículas/química
6.
J Hazard Mater ; 474: 134807, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38850939

RESUMEN

Nanocrop protectants have attracted much attention as sustainable platforms for controlling pests and diseases and improving crop nutrition. Here, we reported the fungicidal activity and disease inhibition potential of pectin-coated metal-iron organic framework nanoparticles (Fe-MOF-PT NPs) against rice stripe blight (RSB). An in vitro bacterial inhibition assay showed that Fe-MOF-PT NPs (80 mg/L) significantly inhibited mycelial growth and nucleus formation. The Fe-MOF-PT NPs adsorbed to the surface of mycelia and induced toxicity by disrupting cell membranes, mitochondria, and DNA. The results of a nontargeted metabolomics analysis showed that the metabolites of amino acids and their metabolites, heterocyclic compounds, fatty acids, and nucleotides and their metabolites were significantly downregulated after treatment with 80 mg/L NPs. The difference in metabolite abundance between the CK and Fe-MOF-PT NPs (80 mg/L) treatment groups was mainly related to nucleotide metabolism, pyrimidine metabolism, purine metabolism, fatty acid metabolism, and amino acid metabolism. The results of the greenhouse experiment showed that Fe-MOF-PT NPs improved rice resistance to R. solani by inhibiting mycelial invasion, enhancing antioxidant enzyme activities, activating the jasmonic acid signaling pathway, and enhancing photosynthesis. These findings indicate the great potential of Fe-MOF-PT NPs as a new RSB disease management strategy and provide new insights into plant fungal disease management.


Asunto(s)
Hierro , Estructuras Metalorgánicas , Oryza , Pectinas , Enfermedades de las Plantas , Rhizoctonia , Oryza/metabolismo , Oryza/efectos de los fármacos , Oryza/microbiología , Rhizoctonia/efectos de los fármacos , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología , Hierro/química , Hierro/metabolismo , Pectinas/química , Pectinas/farmacología , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/farmacología , Fungicidas Industriales/farmacología , Fungicidas Industriales/química , Fungicidas Industriales/toxicidad , Nanopartículas del Metal/química , Nanopartículas del Metal/toxicidad , Resistencia a la Enfermedad/efectos de los fármacos
7.
ACS Nano ; 18(8): 6533-6549, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38355215

RESUMEN

Conventional agrochemicals are underutilized due to their large particle sizes, poor foliar retention rates, and difficult translocation in plants, and the development of functional nanodelivery carriers with high adhesion to the plant body surface and efficient uptake and translocation in plants remains challenging. In this study, a nanodelivery system based on a pectin-encapsulated iron-based MOF (TF@Fe-MOF-PT NPs) was constructed to enhance the utilization of thifluzamide (TF) in rice plants by taking advantage of the pectin affinity for plant cell walls. The prepared TF@Fe-MOF-PT NPs exhibited an average particle size of 126.55 nm, a loading capacity of 27.41%, and excellent dual-stimulus responses to reactive oxygen species and pectinase. Foliar washing experiments showed that the TF@Fe-MOF-PT NPs were efficiently adhered to the surfaces of rice leaves and stems. Confocal laser scanning microscopy showed that fluorescently labeled TF@Fe-MOF-PT NPs were bidirectionally delivered through vascular bundles in rice plants. The in vitro bactericidal activity of the TF@Fe-MOF-PT NPs showed better inhibitory activity than that of a TF suspension (TF SC), with an EC50 of 0.021 mg/L. A greenhouse test showed that the TF@Fe-MOF-PT NPs were more effective than TF SC at 7 and 14 d, with control effects of 85.88 and 78.59%, respectively. It also reduced the inhibition of seed stem length and root length by TF SC and promoted seedling growth. These results demonstrated that TF@Fe-MOF-PT NPs can be used as a pesticide nanodelivery system for efficient delivery and intelligent release in plants and applied for sustainable control of pests and diseases.


Asunto(s)
Fungicidas Industriales , Estructuras Metalorgánicas , Nanopartículas , Hierro , Fungicidas Industriales/farmacología , Pectinas
8.
J Hazard Mater ; 478: 135553, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39173386

RESUMEN

Cationic and anionic castor oil-based waterborne polyurethanes (C-WPU/A and C-WPU/C) have great potential for development in agriculture. However, it is still unclear whether these polyurethanes are harmful or toxic to soil fauna. Based on multilevel toxicity endpoints and transcriptomics, we investigated the effects of C-WPU/A and C-WPU/C on earthworms (Eisenia fetida). The acute toxicity results showed that C-WPU/A was highly toxic to the earthworms, whereas C-WPU/C was nearly nontoxic. C-WPU/A significantly affected the body weight, burrowing ability and cocoon production rate of earthworms compared to C-WPU/C. After exposure to C-WPU/A, the results showed accumulation of reactive oxygen species (ROS), abnormal peroxidase activity, and increased malondialdehyde levels. Additionally, more serious histopathological damage was observed in earthworms, such as epidermal damage, vacuolization, longitudinal muscle disorganization, and shedding of intestinal epidermal cells. At the cellular level, C-WPU/A induced more severe lysosomal damage, DNA damage and apoptosis than C-WPU/A. C-WPU/A made more differentially expressed genes and considerably more enriched pathways at the transcriptional level than C-WPU/C. These pathways are largely involved in cell membrane signaling, detoxification, and apoptosis. These results provide an important reference for elucidating the selective toxicity mechanisms of C-WPU/A and C-WPU/C in earthworms.


Asunto(s)
Aceite de Ricino , Oligoquetos , Poliuretanos , Especies Reactivas de Oxígeno , Oligoquetos/efectos de los fármacos , Oligoquetos/genética , Animales , Poliuretanos/toxicidad , Aceite de Ricino/toxicidad , Medición de Riesgo , Especies Reactivas de Oxígeno/metabolismo , Contaminantes del Suelo/toxicidad , Apoptosis/efectos de los fármacos , Cationes/toxicidad , Aniones/toxicidad , Daño del ADN/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad
9.
ACS Appl Mater Interfaces ; 16(8): 9713-9724, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38373060

RESUMEN

Enhancing the performance of traditional pesticide formulations by improving their leaf surface wetting capabilities is a crucial approach for maximizing the pesticide efficiency. This study develops an emulsifiable concentrate (EC) of 4.5% ß-cypermethrin containing Brucea javanica oil (BJO). The incorporation of BJO aims to improve the leaf-wetting properties of the EC formulation and enhance its insecticidal effectiveness. The droplet size and emulsion characteristics of ß-CYP EC emulsion with varying concentrations of the emulsifier were evaluated, and changes after incorporating BJO were assessed to develop the optimal formulation. A comprehensive comparison was conducted among commercial 4.5% ß-cypermethrin EC (ß-CYP EC-1), 4.5% ß-cypermethrin EC with BJO (ß-CYP EC-2), and 4.5% ß-cypermethrin EC without BJO (ß-CYP EC-3). This comparison encompassed various factors including storage stability, insecticidal activity, cytotoxicity, and wetting performance on cabbage leaves. The results indicated that the ideal emulsifier concentration was 15% emulsifier 0201B. ß-CYP EC-2 demonstrated superior wetting properties on cabbage leaves (the wetting performance of ß-CYP EC-2 emulsion on cabbage leaves is 2.60 times that of the ß-CYP EC-1 emulsion), heightened insecticidal activity against the third larvae of Plutella xylostella [diamondback moth (DBM)] [the insecticidal activity of the ß-CYP EC-2 emulsion against the third larvae of DBM is 1.93 times that of the ß-CYP EC-1 emulsion (12 h)], and more obvious inhibitory effects on the proliferation of DBM embryo cells than the other tested formulations. These findings have significant implications for advancing pest control strategies and promoting sustainable and effective agricultural practices.


Asunto(s)
Brucea , Insecticidas , Piretrinas , Brucea javanica , Aceites de Plantas/farmacología , Emulsiones , Insecticidas/toxicidad
10.
Int J Biol Macromol ; 277(Pt 4): 134459, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39111471

RESUMEN

Water stress, a significant abiotic stressor, significantly hampers crop growth and yield, posing threat to food security. Despite the promising potential of nanoparticles (NPs) in enhancing plant stress tolerance, the precise mechanisms underlying the alleviation of water stress using O-Carboxymethyl chitosan nanoparticles (O-CMC-NPs) in maize remain elusive. In this study, we synthesized O-CMC-NPs and delved into their capacity to mitigate water stress (waterlogging and drought) in maize seedlings. Structural characterization revealed spherical O-CMC-NPs with a size of approximately 200 nm. These NPs accumulated near the seed embryo and root tip, resulting in a substantial increase in fresh and dry weights. The application of O-CMC-NPs to water-stressed maize seedlings remarkedly elevated the chlorophyll content and activity of various antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and polyphenol oxidase (PPO). The malondialdehyde (MDA) content was significantly reduced compared to the untreated control. Additionally, the expression of stress-responsive genes, such as ZmSOD, ZmCAT, ZmPOD, ZmTIFY, ZmACO, ZmPYL2, ZmNF-YC12, and ZmEREB180, were significantly upregulated in the O-CMC-NPs treated seedlings. These findings unveil the novel role of O-CMC-NPs in enhancing plant stress tolerance, suggesting their potential application in safeguarding maize seedlings under water stress conditions and facilitating the recovery from oxidative damage.


Asunto(s)
Quitosano , Nanopartículas , Plantones , Zea mays , Zea mays/efectos de los fármacos , Zea mays/metabolismo , Quitosano/análogos & derivados , Quitosano/química , Quitosano/farmacología , Nanopartículas/química , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Agua/química , Antioxidantes/metabolismo , Estrés Fisiológico/efectos de los fármacos , Deshidratación , Proteínas de Plantas/metabolismo , Clorofila/metabolismo , Malondialdehído/metabolismo
11.
Int J Biol Macromol ; 224: 972-983, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36302478

RESUMEN

Enhancing pesticide selectivity is one of the important strategies to improve pesticide utilization and protect non-target organisms. Herein, a pH-controlled release carrier was prepared to enhance insecticidal activity and reduce toxicity to bees by polysaccharide materials O-carboxymethyl chitosan (O-CMCS) and crosslinker­sodium tripolyphosphate (TPP). Chlorfenapyr (CF) was encapsulated through crosslinking and self-assembled to form a stable nanopesticide (CF@O-CMCS) with a loading ratio of 5.27 %. CF@O-CMCS had excellent pH release dependency. In 36 h, only 26.39 % of the CF in the CF@O-CMCS was released at pH 5.0, whereas 95.28 % was released at pH 10.0. Treated for 48 h with 2.5 mg.ai/L, CF@O-CMCS was 73.33 % more effective at controlling Spodoptera frugiperda larvae than CF SC (Suspension), which was only 40.00 % effective. The lethal concentration 50 % (LC50) of 11.41 mg/L in CF@O-CMCS was four times lower than that of 2.71 mg/L in CF SC at 96 h, making it safer for worker bees. Additionally, CF@O-CMCS treated the gut of worker bees had considerably lower contents of chlorfenapyr and tralopyril (1.13 and 0.59 mg/kg) than CF SC (3.22 and 1.91 mg/kg) group. In consideration of its eco-friendly, enhanced bioactivity, and low toxicity to worker bees, CF@O-CMCS will have a broad application prospect in sustainable agriculture.


Asunto(s)
Quitosano , Plaguicidas , Abejas , Animales , Quitosano/química , Control de Plagas
12.
Int J Biol Macromol ; 253(Pt 4): 126988, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37729980

RESUMEN

Chlorfenapyr (CHL) is a pyrrole insecticide with a novel structure that is used to control resistant pests. However, its weak systemic activity limits its application to crop roots. Herein, a novel CHL formulation with improved effective utilization rates and suitability for root application is developed to avoid or reduce contamination caused by pesticide spraying. Accordingly, we prepared CHL@CS/CMCS nanoparticle (NP) suspensions with a particle size of approximately 100 nm using chitosan (CS) and carboxymethyl chitosan (CMCS). These suspensions exhibited better thermal stability, adhesion, permeability and systemic activity than a CHL suspension concentrate (CHL-SC). The nanoformulation deposition rate on maize leaves after spraying was 12.28 mg/kg, significantly higher than that of CHL-SC. The nanosuspension was effectively absorbed and transported by roots after irrigation and was suitable for root application. The efficacy was 89.46-92.36 % against Spodoptera frugiperda at 7 d, 7.5-17.5 times higher than that of CHL-SC. Furthermore, the CHL@CS/CMCS nanosuspension was safer for earthworms. These results suggest that chitosan-based nanoformulations improve the efficacy, utilization efficiency and active period of CHL control, providing a new approach for CHL application, reducing pollutant dispersal and the environmental impacts of pesticide application and facilitating sustainable agricultural production.


Asunto(s)
Quitosano , Insecticidas , Quitosano/farmacología , Quitosano/química , Zea mays , Insecticidas/farmacología , Contaminación Ambiental
13.
Carbohydr Polym ; 302: 120373, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36604051

RESUMEN

In this study, pH-responsive LC@O-CMCS/PU nanoparticles were prepared by encapsulating λ-cyhalothrin (LC) with O-carboxymethyl chitosan (O-CMCS) to form LC/O-CMCS and then covering it with polyurethane (PU). Characterization and performance test results demonstrate that LC@O-CMCS/PU had good alkaline release properties and pesticide loading performance. Compared to commercial formulations containing large amounts of emulsifiers (e.g., emulsifiable concentrate, EC), LC@O-CMCS/PU showed better leaf-surface adhesion. On the dried pesticide-applied surfaces, the acute contact toxicity of LC@O-CMCS/PU to Harmonia axyridis (H. axyridis) was nearly 20 times lower than that of LC EC. Due to the slow-releasing property of LC@O-CMCS/PU, only 16.38 % of LC was released at 48 h in dew and effectively reduced the toxicity of dew. On the pesticide-applied leaves with dew, exposure to the LC (EC) caused 86.66 % mortality of H. axyridis larvae significantly higher than the LC@O-CMCS/PU, which was only 16.66 % lethality. Additionally, quantitative analysis demonstrated 11.33 mg/kg of λ-cyhalothrin in the dew on LC@O-CMCS/PU lower than LC (EC) with 4.54 mg/kg. In summary, LC@O-CMCS/PU effectively improves the safety of λ-cyhalothrin to H. axyridis and has great potential to be used in pest control combining natural enemies and chemical pesticides.


Asunto(s)
Escarabajos , Plaguicidas , Piretrinas , Animales , Piretrinas/toxicidad , Plaguicidas/toxicidad , Control de Plagas , Concentración de Iones de Hidrógeno
14.
ACS Appl Mater Interfaces ; 15(30): 36036-36051, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37488665

RESUMEN

Spodoptera frugiperda (S. frugiperda) is an invasive pest that threatens global crop production and food security and poses a serious threat to maize production worldwide. Metal-organic framework (MOF) nanocarriers have great potential for agricultural pest control applications. The present study successfully prepared the chemical cross-linking of iron-based metal-organic framework nanoparticles (MIL-101(Fe)-NH2 NPs) with sodium lignosulfonate (SL) as a pH/laccase double stimuli-responsive pesticide release system. The average particle size of the prepared chlorfenapyr (CF)-loaded nanoparticles (CF@MIL-101-SL NPs) was 161.54 nm, and the loading efficiency was 44.52%. Bioactivity assays showed that CF@MIL-101-SL NPs increased the toxicity of CF to S. frugiperda and caused the rupture of the peritrophic membrane and enlargement of the midgut. Data from 16S rRNA gene sequencing showed that CF@MIL-101-SL treatment reduced the resistance of S. frugiperda to pesticides and pathogens and affected nutrient and energy availability by remodeling the intestinal microbiota of S. frugiperda. The dysregulated microbial community interacted with the broken peritrophic membrane, which exacerbated damage to the host. Nontargeted metabolomic results showed that ABC transporters may be a potential mechanism for the enhanced toxicity of CF@MIL-101-SL to S. frugiperda. In summary, the present study provides effective strategies for toxicological studies of nanopesticides against insects.


Asunto(s)
Insecticidas , Estructuras Metalorgánicas , Microbiota , Animales , Insecticidas/farmacología , Estructuras Metalorgánicas/farmacología , Spodoptera/genética , Hierro/farmacología , ARN Ribosómico 16S , Larva , Zea mays/genética
15.
Environ Sci Pollut Res Int ; 30(8): 21588-21597, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36272005

RESUMEN

Bifenthrin is a pyrethroid pesticide widely used on kumquats, but the residues in the peel and pulp after bifenthrin application at different maturity stages of kumquats have not been evaluated. This study developed a simple and rapid high-performance liquid chromatography (HPLC) method for the quantitative analysis of bifenthrin residues in whole fruit, kumquat peel, kumquat pulp, and soil. The results showed that regardless of whether bifenthrin was applied one or three times during the near-mature period, the half-lives of the fruit peel and fruit pulp were longer than those in the immature period. Kumquat fruit residues decreased with time at both maturity levels. The residues of bifenthrin in near-mature fruit exceeded the MRL in Guangxi and Fujian 14 days after the three applications of bifenthrin, suggesting that this issue should be focused on in kumquat production and supervision. However, for bifenthrin application in either the near-mature or the immature fruit period, the calculated risks for chronic dietary intake of kumquat were well below 100%. The data demonstrate that the chronic dietary intake risk of bifenthrin through kumquat consumption is low and within acceptable limits. These results provide a reference and risk assessment data for the safe and rational use of bifenthrin insecticides.


Asunto(s)
Citrus , Residuos de Plaguicidas , Piretrinas , Rutaceae , Frutas/química , Citrus/química , China , Piretrinas/análisis , Medición de Riesgo , Ingestión de Alimentos , Residuos de Plaguicidas/análisis
16.
Int J Biol Macromol ; 253(Pt 4): 126947, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37734523

RESUMEN

A chitosan-based nanoparticle was prepared using chitosan (CS) and O-carboxymethyl chitosan (O-CMCS). Our study revealed that chitosan/O-carboxymethyl chitosan/tebuconazole nanoparticles (CS/O-CMCS/TBA NPs) exhibited superior antifungal activity, foliar adhesion, and microbial target adhesion performance compared to commercial suspension concentrate (SC). The antifungal activity of CS/O-CMCS/TBA NPs against C. gloeosporioides, with a 3.13-fold increase in efficacy over TBA (SC). We also found that low concentrations of CS/O-CMCS NPs promoted the growth of C. gloeosporioides and enhanced the fungal catabolism of chitosan. Overall, the CS/O-CMCS/TBA NPs were found to possess the remarkable capability to selectively aggregate around pathogenic microorganisms and CS/O-CMCS NPs can enhance the fungal catabolism of chitosan. CS/O-CMCS/TBA NPs, as a "sugar-coated bomb", was a promising asset for effective plant disease management and pesticide utilization through the affinity of chitosan-based nanoparticles and C. gloeosporioides, enabling targeted delivery and targeted release of their encapsulated active ingredient, which was important for the development and application of biocompatible chitosan-based nanopesticides.


Asunto(s)
Quitosano , Fragaria , Nanopartículas , Portadores de Fármacos , Azúcares , Quitosano/farmacología , Antifúngicos/farmacología
17.
Sci Total Environ ; 885: 163769, 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37149190

RESUMEN

O-Carboxymethyl chitosan nanoparticles (O-CMC-NPs), which are organic pesticide carriers, have excellent application potential. Exploring the effects of O-CMC-NPs on non-target organisms, such as Apis cerana cerana, is critical for their effective application; however, such studies are limited. This study investigated the stress response of A. cerana Fabricius after O-CMC-NPs ingestion. The administration of high O-CMC-NP concentrations enhanced the activities of antioxidant and detoxifying enzymes in A. cerana, with the activity of glutathione-S-transferase increasing by 54.43 %-64.33 % after one day. The transit of O-CMC-NPs into the A. cerana midgut resulted in their deposition and adherence to the intestinal wall, as they cluster and precipitate in acidic conditions. The population of Gillianella bacteria in the middle intestine was remarkably reduced after 6 d of administration of high O-CMC-NP concentrations. Contrastingly, the abundance of Bifidobacteria and Lactobacillus in the rectum significantly increased. These results indicate that the intake of high concentrations of O-CMC-NPs causes a stress response in A. cerana and affects the relative abundance of crucial intestinal flora, which may pose a potential risk to the colony. This implies that even nanomaterials with favorable biocompatibility should be applied reasonably within a specific range to avoid adverse effects on the environment and non-target organisms in the context of large-scale research and promotion of nanomaterials.


Asunto(s)
Quitosano , Microbioma Gastrointestinal , Abejas , Animales , Antioxidantes
18.
Pest Manag Sci ; 78(8): 3365-3375, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35514211

RESUMEN

BACKGROUND: Downy mildew, a devastating disease of cucurbitaceous crops caused by Pseudoperonospora cubensis. Although a variety of fungicides are used to control downy mildew, choosing an effective product can be challenging. Environmental stimulus-responsive pesticide delivery systems have great potential to improve the effectiveness of disease and pest control and reduce the impact on environmentally beneficial organisms. RESULTS: In this work, a disulfide bond (SS)-modified and chitosan oligosaccharide (COS)-capped hollow mesoporous silica (HMS) pesticide delivery system was synthesized using a hard template method for the control of downy mildew in cucurbit crops. The synthesized nanoparticles were loaded with dimethomorph (DMM), denoted as DMM@HMS-SS-COS, and the developmental toxicity of these nanoparticles to zebrafish embryos were evaluated. The results showed that the prepared DMM@HMS-SS-COS exhibited excellent dual response properties to pH and glutathione (GSH), with an encapsulation rate of up to 24.36%. DMM@HMS-SS-COS has good ultraviolet (UV) radiation stability and adhesion properties. Compared with dimethomorph suspension concentrate (SC), DMM@HMS-SS-COS was more effective against downy mildew for up to 21 days. Toxicity tests showed that DMM@HMS-SS-COS significantly reduced the effect of DMM on the hatching rate and survival rate of zebrafish embryos. CONCLUSIONS: This work not only demonstrates that DMM@HMS-SS-COS could be used as a nanodelivery system for intelligent control of downy mildew but also emphasizes the necessity of increasing the acute toxicity of nanoformulations to non-target organisms in environmental risk assessment. © 2022 Society of Chemical Industry.


Asunto(s)
Fungicidas Industriales , Luffa , Oomicetos , Animales , Productos Agrícolas , Fungicidas Industriales/farmacología , Concentración de Iones de Hidrógeno , Oxidación-Reducción , Dióxido de Silicio/química , Pez Cebra
19.
Int J Biol Macromol ; 220: 193-203, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-35981672

RESUMEN

Botanical pesticides are biological pesticides that are environment friendly. However, their instability and short persistence limit their application. In this study, pH sensitive chitosan based rotenone (Rot) nanoparticles (CS/CMCS/Rot-NPs) were prepared using chitosan and carboxymethyl chitosan to take advantage of the acidic nature of the red fire ant midgut. Chitosan based nanoparticles showed photoprotective and slow sustained release effects on Rot and significantly increased the insecticidal activity of Rot against red fire ants. The 24-96hLC50 of CS/CMCS/Rot-NPs against red fire ants was 3.28-6.84 fold that of Rot. The CS/CMCS/Rot-NPs significantly reduced the venom alkaloid content of red fire ants and their living environment and weakened their survival by increasing their survival cost in the ecological environment. Nanotechnology combined with botanical pesticides can be used as a novel, safe, effective, and ecofriendly method to control red fire ants.


Asunto(s)
Alcaloides , Hormigas , Quitosano , Insecticidas , Agricultura , Alcaloides/química , Animales , Hormigas/química , Agentes de Control Biológico , Preparaciones de Acción Retardada , Insecticidas/farmacología , Rotenona
20.
Toxics ; 10(8)2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-36006113

RESUMEN

BACKGROUND: As a systematic fungicide, prochloraz is often used to control banana freckle disease, and it is significant to assess the safety and risk of prochloraz. METHODS: The dissipation kinetics and distribution of prochloraz in bananas were measured by high-performance liquid chromatography (HPLC). RESULTS: The results showed that the fortified recoveries in bananas were 83.01-99.12%, and the relative standard deviations (RSDs) were 2.45-7.84%. The half-life of prochloraz in banana peel (3.93-5.60 d) was significantly lower than it was in whole banana (8.25-10.80 d) and banana pulp (10.35-12.84 d). The terminal residue of prochloraz in banana fruits was below the maximum residue level (MRL, China) at pre-harvest intervals (PHI) of 21 d. Moreover, the residue of prochloraz in banana peel was always 1.06-7.71 times greater than it was in banana pulp. The dietary risk assessment results indicated that the prochloraz residue in bananas at PHI of 21 d was safe for representative populations. (4) Conclusions: We found that a 26.7% prochloraz emulsion oil in water (EW) diluted 1000-fold and sprayed three times under field conditions was safe and reliable, providing a reference for the safe application of prochloraz in bananas.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA