RESUMEN
A CuH-catalyzed reductive coupling of nitroarenes with phosphine oxides is developed, which produces a series of phosphamides in moderate to excellent yields with good functional group tolerance. Gram-scale synthesis and late-stage modification of nitro-aromatic functional molecule niclosamide are also successfully conducted. The mechanism study shows that the nitro group is transformed after being reduced to nitroso and a nucleophilic addition procedure is involved during the reaction.
RESUMEN
An efficient method for the construction of C-P(V) and C-P(III) bonds via the iron-catalyzed phosphorylation of alcohols under ligand-free conditions is disclosed. This strategy represents a straightforward process to prepare a series of phosphine oxides and phosphine compounds in good to excellent yields from the readily available alcohols and P-H compounds. A plausible mechanism is also proposed. We anticipate that this mode of transforming simple alcohols would apply in chemical synthesis widely.
RESUMEN
A palladium-catalyzed decarbonylative annulation of 2-arylbenzoic acids with internal alkynes via C(sp2)-H activation has been developed. A series of phenanthrenes were produced in moderate to good yield with good functional group tolerance. The mechanism study indicated that the C(sp2)-H activation should be the rate-determining step during the reaction.
RESUMEN
The C-H amination and C-O alkenylation of aryl triflates was achieved through Pd/norbornene (NBE) cooperative catalysis. By this strategy, various ortho-alkenyl tertiary anilines including those bearing functional groups were produced in good to excellent yields. This reaction represents a new conversion model for phenoxides. It expands the scope of Catellani-type reactions and the application of phenoxides in organic synthesis.
RESUMEN
A nickel-catalyzed decarbonylative thioetherification of carboxylic acids with thiols was developed. Under the reaction conditions, benzoic acids, cinnamic acids, and benzyl carboxylic acids coupled with various thiols including both aromatic and aliphatic ones produce the corresponding thioethers in up to 99% yields. Moreover, this reaction was applicable to the modification of bioactive molecules such as 3-methylflavone-8-carboxylic acid, probenecid, and flufenamic acid, and the synthesis of acaricide chlorbenside. These results well demonstrated the potential synthetic value of this new reaction in organic synthesis.
Asunto(s)
Ácidos Carboxílicos , Níquel , Catálisis , Compuestos de Sulfhidrilo , SulfurosRESUMEN
The direct decarbonylative cyanation of benzoic acids with TMSCN was achieved through palladium catalysis. By this strategy, a wide range of nitriles including those with functional groups was synthesized in good to high yields. Moreover, this reaction applied to modifying bioactive molecules such as adapalene, probenecid, telmisartan, and 3-methylflavone-8-carboxylic acid. These results demonstrate that this new reaction has potential synthetic value in organic synthesis.
Asunto(s)
Ácidos Carboxílicos , Paladio , Catálisis , Cianuros , Compuestos de TrimetilsililoRESUMEN
A base-promoted direct deaminative olefination of organoammonium salts was developed. Only mediated by KOtBu, a series of benzyl and cinnamyl ammonium salts reacted smoothly with sulfones, producing the valuable stilbenes and related 1,3-diene derivatives in good to high yields with good functional group tolerance and excellent E-selectivity. With this developed method, biologically active resveratrol and DMU-212 were also successfully prepared, which further demonstrates the practicality of this reaction.
Asunto(s)
Estilbenos , Sulfonas , Polienos , Sales (Química)RESUMEN
The challenging transamidation of unactivated tertiary amides has been accomplished via cooperative acid/iodide catalysis. Most crucially, the method provides a novel manifold to re-route the reactivity of unactivated N,N-dialkyl amides through reactive acyl iodide intermediates, thus reverting the classical order of reactivity of carboxylic acid derivatives. This method provides a direct route to amide-to-amide bond interconversion with excellent chemoselectivity using equivalent amounts of amines. The combination of acid and iodide has been identified as the essential factor to activate the amide C-N bond through electrophilic catalytic activation, enabling the production of new desired transamidated products with wide substrate scope of both unactivated amides and amines, including late-stage functionalization of complex APIs (>80â examples). We anticipate that this powerful activation mode of unactivated amide bonds will find broad-ranging applications in chemical synthesis.
RESUMEN
A practical and sustainable synthesis of arylsulfonate esters has been developed through electro-oxidation. This reaction employed the stable and readily available phenols and sodium arenesulfinates as the starting materials and took place under mild reaction conditions without additional oxidants. A wide range of arylsulfonate esters including those bearing functional groups were produced in good to excellent yields. This reaction could also be conducted at a gram scale without a decrease of reaction efficiency. Those results well demonstrated the potential synthetic value of this reaction in organic synthesis.
Asunto(s)
Ésteres , Fenoles , Arilsulfonatos , Catálisis , Estrés Oxidativo , SodioRESUMEN
A facile and general method for constructing carbon-heteroatom (C-P, C-O, C-S, and C-N) bonds via C-N cleavage of benzyl ammonium salts under transition-metal-free conditions was reported. The combination of t-BuOK and 18-crown-6 enabled a wide range of substituted benzyl ammonium salts to couple readily with different kinds of heteroatom nucleophiles, i.e. hydrogen phosphoryl compounds, alcohols, thiols, and amines. Good functional group tolerance was demonstrated. The scale-up reaction and one-pot synthesis were also successfully performed.
RESUMEN
A palladium-catalyzed difunctionalization of bicyclic alkenes with organoammonium salts and organoboronic compounds was reported. A wide range of functionalized cyclic products, including those bearing functional groups, were produced stereoselectively in good to excellent yields. The gram-scale experiment, one-pot operation, and synthetic application of ß-borylated products further demonstrated the synthetic value of this new reaction in organic synthesis.
RESUMEN
A transition-metal-free and base promoted C-C bond forming reaction of benzyl C(sp3)-H bond with organoammonium salts via C-N bond cleavage has been reported. Benzyl ammonium salts as well as cinnamyl ammonium salt could couple readily with various benzyl C(sp3)-H species, producing the corresponding products in moderate to excellent yields with good functional group tolerance. Late stage chemical manipulation enabled the specific 1,2-diarylethane structure of products transformed into useful olefin compounds via dehydrogenation, which further demonstrated the utility of this reaction.
RESUMEN
The controllable phosphorylations of thioesters were developed. When the reaction was catalyzed by a palladium catalyst, aryl or alkenyl phosphoryl compounds were generated through decarbonylative coupling, while the benzyl phosphoryl compounds were produced through deoxygenative coupling when the reaction was carried out in the presence of only a base.
RESUMEN
Under a dioxygen atmosphere, benzylphosphonates and related phosphoryl compounds can readily produce the corresponding trans-stilbenes in high yields with high selectivity upon treatment with bases. Various functional groups were tolerable under the reaction conditions.
RESUMEN
Radical hydrophosphorylation of aliphatic terminal alkynes with H-phosphine oxides can produce the corresponding anti-Markovnikov alkenylphosphorus adducts in moderate yields. This method is a cleaner approach for the preparation of the corresponding alkenylphosphine oxides, since it avoids the use of a metal catalyst that sometimes is difficult to remove from the products.
RESUMEN
The cyclic compounds have wide applications in the design and synthesis of drugs and materials; thus, their efficient construction attracts much attention from the synthetic community. In this letter, we report an efficient method for preparing cyclic compounds starting from the readily available carboxylic acids. This reaction takes place through intramolecular decarbonylative sp2 C-H arylation, enabling efficient synthesis of a wide range of five- and six-membered cyclic compounds. Both carbo- and heterocycles can be produced under the reaction conditions. Moreover, this reaction features a wide substrate scope with high functional group tolerance. The scale-up experiments also show its practicality in organic synthesis. Those experimental results indicate that this reaction would find wide applications in the synthetic community.
RESUMEN
Single-atom nanozymes (SAzymes) as a class of highly active nanozymes with the advantages of high atom utilization, high catalytic activity and stability have attracted great attention. In this work, Fe-N-C SAzymes with exceptional oxidase (OXD)-like activity were achieved utilizing polyvinylpyrrolidone (PVP) as a template. The Fe-N-C SAzymes with remarkable OXD-like activity could oxidize TMB to blue oxTMB, but 8-hydroxyquinoline (8-HQ) as a metal chelator is capable of discoloring oxTMB. Thus, the addition of 8-HQ decolorized the solution. However, upon the introduction of Cr(VI) ions, 8-HQ preferentially chelated with the Cr(VI) ions, reversing the inhibition of the color reaction and restoring the blue color. Based on this phenomenon, we constructed a novel paper-based analytical device (PAD) that exhibited a linear range of 5-1000 µM and an LOD of 1.2 µM. Importantly, the PAD used in this study shows the merits of simplicity, low preparation costs, and rapid reaction times. When combined with smartphone RGB analysis, it enables the simultaneous analysis of eight different Cr(VI) concentrations without the need for large-scale instrumentation. Moreover, the proposed PAD displays high selectivity, accuracy and utility in testing actual short-necked clam samples. This work not only provides a simple and cost-effective method to detect Cr(VI) but also makes a contribution to rapid food testing.
RESUMEN
The rapid, precise, and high-throughput identification of multiple heavy metals ions holds immense importance in ensuring food safety and promoting public health. This study presents a novel smartphone-assisted colorimetric sensor array for the rapid and precise detection of multiple heavy metals ions. The sensor array is based on three signal recognition elements (AuPt@Fe-N-C, AuPt@N-C, and Fe-N-C) and the presence of different heavy metal ions affects the nanozymes-chromogenic substrate (TMB) catalytic color production, enabling the differentiation and quantification of various heavy metal ions. Combined with a smartphone-based RGB mode, the colorimetric sensor array can successfully identify five different heavy metal ions (Hg2+, Pb2+, Co2+, Cr6+, and Fe3+) as low as 0.5 µM and different ratios of binary and ternary mixed heavy metal ions in just 5 min. The sensor array successfully tested seawater and salmon samples with a total heavy metal content of 10 µM in the South China Sea (Haikou and Wenchang). Overall, this study highlights the potential of smartphone-assisted colorimetric sensor arrays for the rapid and precise detection of multiple heavy metal ions, which could significantly contribute to food safety and public health monitoring.
RESUMEN
A Pd-catalyzed decarbonylative Michaelis-Arbuzov reaction of carboxylic acids and triaryl phosphites for preparing aryl phosphonates under anhydride-free conditions has been reported. In this context, triaryl phosphites serve as both reagents for activating the carboxylic acids and substrates for the reaction. There have been no reports to date of efficient and direct methods for the in situ activation of carboxylic acids using triaryl phosphites. In comparison to known methods, this reaction avoids the use of organohalides and has an excellent functional group tolerance for the synthesis of various aryl phosphonates from triaryl phosphites and carboxylic acids. This reaction is scalable and applicable to the synthesis of aryl phosphonates featuring bioactive fragments.
RESUMEN
In this study, an electrochemiluminescence (ECL) immunosensor based on nanobody heptamer and resonance energy transfer (RET) between g-C3N4 (g-CN) and NU-1000(Zr) was proposed for ultrasensitive ochratoxin A (OTA) detection. First, OTA heptamer fusion protein was prepared by fusing OTA-specific nanometric (Nb28) with a c-terminal fragment of C4 binding protein (C4bpα) (Nb28-C4bpα). Then, Nb28-C4bpα heptamer with the high affinity used as a molecular recognition probe, of which plenty of binding sites were provided for OTA-Apt-NU-1000(Zr) nanocomposites, thereby improving the immunosensors' sensitivity. In addition, the quantitative analysis of OTA can be achieved by using the signal quenching effect of NU-1000(Zr) on g-CN. As the concentration of OTA increases, the amount of OTA-Apt-NU-1000(Zr) fixed on the electrode surface decreases. RET between g-CN and NU-1000(Zr) is weakened leading to the increase of ECL signal. Thus, OTA content is indirectly proportional to ECL intensity. Based on the above principle, an ultra-sensitive and specific ECL immunosensor for OTA detection was constructed by using heptamer technology and RET between two nanomaterials, with a range from 0.1 pg/mL to 500 ng/mL, and the detection limit of only 33 fg/mL. The prepared ECL-RET immunosensor showed good performance and can be successfully used for the determination of OTA content in real coffee samples, suggesting that the nanobody polymerization strategy and the RET effect between NU-1000(Zr) and g-CN can provide an alternative for improving the sensitivity of important mycotoxin detection.