Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Eur Spine J ; 32(5): 1553-1560, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36935451

RESUMEN

PURPOSE: To evaluate the use of the modified and simplified vertebral bone quality (VBQ) method based on T1-weighted MRI images of S1 vertebrae in assessing bone mineral density (BMD) for patients with lumbar degenerative diseases. METHODS: We reviewed the preoperative data of patients with lumbar degenerative diseases undergoing lumbar spine surgery between January 2019 and June 2022 with available non-contrast T1-weighted magnetic resonance imaging (MRI), computed tomography (CT) images and dual-energy X-ray absorptiometry (DEXA). S1 vertebral bone quality scores (S1 VBQ) and S1 CT Hounsfield units were measured with picture archiving and communication system (PACS). One-way ANOVA was applied to present the discrepancy between the S1 VBQ of patients with normal bone density (T-score ≥ - 1.0), osteopenia (- 2.5 < T-score < - 1.0) and osteoporosis (T-score ≤ - 2.5). The receiver operating characteristic curve (ROC) was drawn to analyze the diagnostic performance of S1 VBQ in distinguishing low BMD. Statistical significance was set at p < 0.05. RESULTS: A total of 207 patients were included. The S1 VBQ were significantly different between groups (p < 0.001). Interclass correlation coefficient for inter-rater reliability was 0.86 (95% CI 0.78-0.94) and 0.94(95% CI 0.89-0.98) for intra-rater reliability. According to the linear regression analysis, the S1 VBQ has moderate-to-strong correlations with DEXA T-score (r = - 0.48, p < 0.001). The area under the ROC curve indicated a predictive accuracy of 82%. A sensitivity of 77.25% with a specificity of 70% could be achieved for distinguishing low BMD by setting the S1 VBQ cutoff as 2.93. CONCLUSIONS: The S1 VBQ was a promising tool in distinguishing poor bone quality in patients with lumbar degenerative diseases, especially in cases where the previously reported VBQ method based on L1-L4 was not available. S1 VBQ score could be useful as opportunistic assessment for screening and complementary evaluation to DEXA T-score before surgery.


Asunto(s)
Densidad Ósea , Enfermedades Óseas Metabólicas , Humanos , Reproducibilidad de los Resultados , Absorciometría de Fotón/métodos , Vértebras Lumbares/diagnóstico por imagen , Vértebras Lumbares/cirugía , Vértebras Lumbares/patología , Enfermedades Óseas Metabólicas/patología , Imagen por Resonancia Magnética , Estudios Retrospectivos
2.
BMC Musculoskelet Disord ; 23(1): 848, 2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36071416

RESUMEN

BACKGROUND: This study aimed to compare the biomechanical differences between anterior cervical discectomy and fusion (ACDF) with multiple-level separate plates and conventional long plates by using finite element analysis. METHODS: The following four finite element models were created to simulate various fixations: (1) C4-6 ACDF with multiple plates, (2) C4-6 ACDF with a single plate, (3) C3-6 ACDF with multiple plates, and (4) C3-6 ACDF with a single plate. The maximum Von-mises stress of the cage and fixation, compressive force of the adjacent intervertebral discs and range of motion (ROM) of different segments in the four models were calculated and analyzed. RESULTS: For C4-6 ACDF, the maximum Von-mises stress of the cage and fixation was lower in the multiple plate fixation model in all motion states. Similarly, for the C3-6 ACDF models, the peak stress of the C3-4 and C5-6 cages was lower with multiple plates fixation in all motions but the stress of the C4-5 cage in the multiple plates model was slightly higher in flexion, bending and rotation. Besides, applying multiple plates in C3-6 ACDF models resulted in a decreased maximum stress of the fixation under different motions except for bending. In both the C4-6 ACDF and C3-6 ACDF models, the ROM values of the adjacent motion segments were lower in the multiple plates models in extension, bending and rotation. In the C4-6 ACDF models, the peak stress on the adjacent intervertebral discs in the multiple plates models was slightly smaller. In C3-6 ACDF models, the maximum stress on the adjacent intervertebral discs was larger in the single-plate model under flexion, bending and rotation movements. CONCLUSION: Multiple plates fixation has a positive effect on increasing stiffness and maintaining the ROM of adjacent segments, indicating lower risk of construct failure and adjacent segment degeneration. Further studies are required to confirm its efficacy in clinical practice.


Asunto(s)
Vértebras Cervicales , Fusión Vertebral , Fenómenos Biomecánicos , Vértebras Cervicales/cirugía , Discectomía/métodos , Análisis de Elementos Finitos , Humanos , Fusión Vertebral/efectos adversos , Fusión Vertebral/métodos
3.
Sensors (Basel) ; 21(8)2021 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-33920218

RESUMEN

The online system state initialization and simultaneous spatial-temporal calibration are critical for monocular Visual-Inertial Odometry (VIO) since these parameters are either not well provided or even unknown. Although impressive performance has been achieved, most of the existing methods are designed for filter-based VIOs. For the optimization-based VIOs, there is not much online spatial-temporal calibration method in the literature. In this paper, we propose an optimization-based online initialization and spatial-temporal calibration method for VIO. The method does not need any prior knowledge about spatial and temporal configurations. It estimates the initial states of metric-scale, velocity, gravity, Inertial Measurement Unit (IMU) biases, and calibrates the coordinate transformation and time offsets between the camera and IMU sensors. The work routine of the method is as follows. First, it uses a time offset model and two short-term motion interpolation algorithms to align and interpolate the camera and IMU measurement data. Then, the aligned and interpolated results are sent to an incremental estimator to estimate the initial states and the spatial-temporal parameters. After that, a bundle adjustment is additionally included to improve the accuracy of the estimated results. Experiments using both synthetic and public datasets are performed to examine the performance of the proposed method. The results show that both the initial states and the spatial-temporal parameters can be well estimated. The method outperforms other contemporary methods used for comparison.

4.
Pak J Med Sci ; 36(2): 69-72, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32063934

RESUMEN

OBJECTIVE: To discuss clinical effect of different dosage of rituximab combined with cyclophosphamide in treatment of refractory immune thrombocytopenia (rITP). METHOD: This study was conducted at Department of Hematopathology in XX Hospital from January 2016 to January 2018. In this study. Seventy-eight patients with rITP were selected as the objects, divided into observation group (39 cases) and control group (39 cases) according to random number table. Patients in the control group were treated with conventional rituximab and cyclophosphamide, while the observation group received low-dose rituximab. The same amount of cyclophosphamide was used in the two groups. The statistics of clinical effect, recurrence rate, untoward effect and Laboratory inspection of both groups were made before and after the treatment. RESULTS: Compared with the control group, the total occurrence rate of side effects in the observation group decreased significantly; the level of IgM and CD20+ in the observation group also decreased significantly, while. The level of IgA, IgG, CD3+ and CD4+ rose significantly (P<0.05). The differences in the level of Th1, TNF-a, IL-18 and Sc5b-9 had statistical significance before and after the treatment (P<0.05). CONCLUSION: Rituximab combined with cyclophosphamide has the definite curative effect on rITP. The small dosage of rituximab combined with cyclophosphamide has higher clinical safety in the treatment.

5.
Pathobiology ; 86(5-6): 263-273, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31430762

RESUMEN

BACKGROUND: Mitochondrial transcription factor A (TFAM) plays multiple pathophysiologic roles in mitochondrial DNA (mtDNA) maintenance. However, the role of TFAM in sepsis-induced acute kidney injury (AKI) remains largely unknown. METHODS: Lipopolysaccharide (LPS) treatment of HK-2 cells mimics the in vitro model of AKI inflammation. pcDNA3.1 plasmid was used to construct pcDNA3.1-TFAM. sh-TFAM-543, sh-TFAM-717, sh-TFAM-765, sh-TFAM-904 and pcDNA3.1-TFAM were transfected into HK-2 cells using Lipofectamine 2000. MtDNA transcriptional levels were detected by quantitative real-time polymerase chain reaction (qRT-PCR). 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide (MTT) assay was performed to assess the cell viability. Changes in reactive oxygen species (ROS) and mitochondrial membrane potential in HK-2 cells were detected using the corresponding kits. Immunofluorescence experiment was used to investigate the displacement of TFAM. mRNA and protein expression levels of TFAM and its related genes were measured by qRT-PCR and western blot respectively. Mice in sepsis were administered cecal ligation and puncture surgery. RESULTS: LPS treatment was a non-lethal influencing factor, leading to the upregulation of ROS levels and downregulation of mtDNA copy number and NADH dehydrogenase subunit-1 (ND1) expression, and caused damage to the mitochondria. As the LPS treatment time increased, TFAM was displaced from the periphery of the nucleus to cytoplasm. TFAM reduced ROS and P38MAPK levels by inhibiting toll-like receptor 4 (TLR4) expression, ultimately inhibiting inflammation and repairing mtDNA. CONCLUSIONS: Our results indicate that TFAM repairs mtDNA by blocking the TLR4/ROS/P38MAPK signaling pathway in inflammatory cells, thereby repairing septic tubular epithelial cells, and TFAM may serve as a new target for sepsis therapy.


Asunto(s)
Proteínas de Unión al ADN/genética , Células Epiteliales/patología , Proteínas Mitocondriales/genética , Especies Reactivas de Oxígeno/metabolismo , Sepsis/genética , Transducción de Señal/efectos de los fármacos , Receptor Toll-Like 4/antagonistas & inhibidores , Factores de Transcripción/genética , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Animales , Línea Celular , Humanos , Túbulos Renales/citología , Ratones , Ratones Endogámicos C57BL , Sepsis/patología
6.
Nanomicro Lett ; 16(1): 92, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38252258

RESUMEN

Despite the growing demand for transparent conductive films in smart and wearable electronics for electromagnetic interference (EMI) shielding, achieving a flexible EMI shielding film, while maintaining a high transmittance remains a significant challenge. Herein, a flexible, transparent, and conductive copper (Cu) metal mesh film for EMI shielding is fabricated by self-forming crackle template method and electroplating technique. The Cu mesh film shows an ultra-low sheet resistance (0.18 Ω â–¡-1), high transmittance (85.8%@550 nm), and ultra-high figure of merit (> 13,000). It also has satisfactory stretchability and mechanical stability, with a resistance increases of only 1.3% after 1,000 bending cycles. As a stretchable heater (ε > 30%), the saturation temperature of the film can reach over 110 °C within 60 s at 1.00 V applied voltage. Moreover, the metal mesh film exhibits outstanding average EMI shielding effectiveness of 40.4 dB in the X-band at the thickness of 2.5 µm. As a demonstration, it is used as a transparent window for shielding the wireless communication electromagnetic waves. Therefore, the flexible and transparent conductive Cu mesh film proposed in this work provides a promising candidate for the next-generation EMI shielding applications.

7.
Polymers (Basel) ; 16(3)2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38337329

RESUMEN

Polyurea has gained significant attention in recent years as a functional polymer material, specifically regarding blast and impact protection. The molecular structure of polyurea is characterized by the rapid reaction between isocyanate and the terminal amine component, and forms an elastomeric copolymer that enhances substrate protection against blast impact and fragmentation penetration. At the nanoscale, a phase-separated microstructure emerges, with dispersed hard segment microregions within a continuous matrix of soft segments. This unique microstructure contributes to the remarkable mechanical properties of polyurea. To maximize these properties, it is crucial to analyze the molecular structure and explore methods like formulation optimization and the incorporation of reinforcing materials or fibers. Current research efforts in polyurea applications for protective purposes primarily concentrate on construction, infrastructure, military, transportation and industrial products and facilities. Future research directions should encompass deliberate formulation design and modification, systematic exploration of factors influencing protective performance across various applications and the integration of numerical simulations and experiments to reveal the protective mechanisms of polyurea. This paper provides an extensive literature review that specifically examines the utilization of polyurea for blast and impact protection. It encompasses discussions on material optimization, protective mechanisms and its applications in blast and impact protection.

8.
Bioinorg Chem Appl ; 2024: 8843214, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38204734

RESUMEN

Purpose: The crystal adhesion caused by the damage of renal tubular epithelial cells (HK-2) is the key to the formation of kidney stones. However, no effective preventive drug has been found. This study aims to explore the recovery effects of four Laminaria polysaccharides (SLPs) with different sulfate (-OSO3-) contents on damaged HK-2 cells and the difference in the adhesion of damaged cells to nanometer calcium oxalate monohydrate (COM) and calcium oxalate dihydrate (COD) before and after recovery. Methods: Sodium oxalate (2.6 mmol/L) was used to damage HK-2 cells to establish a damaged model. SLPs (LP0, SLP1, SLP2, and SLP3) with -OSO3- contents of 0.73%, 15.1%, 22.8%, and 31.3%, respectively, were used to restore the damaged cells, and the effects of SLPs on the adhesion of COM and COD, with a size of about 100 nm before and after recovery, were measured. Results: The following results were observed after SLPs recovered the damaged HK-2 cells: increased cell viability, restored cell morphology, decreased reactive oxygen levels, increased mitochondrial membrane potential, decreased phosphatidylserine eversion ratio, increased cell migration ability, reduced expression of annexin A1, transmembrane protein, and heat shock protein 90 on the cell surface, and reduced adhesion amount of cells to COM and COD. Under the same conditions, the adhesion ability of cells to COD crystals was weaker than that to COM crystals. Conclusions: As the sulfate content in SLPs increases, the ability of SLPs to recover damaged HK-2 cells and inhibit crystal adhesion increases. SLP3 with high -OSO3- content may be a potential drug to prevent kidney stones.

9.
Asian Spine J ; 18(1): 110-117, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38379150

RESUMEN

STUDY DESIGN: Retrospective clinical trial. PURPOSE: To establish a morphological classification of the cervical spinal canal using its parameters. OVERVIEW OF LITERATURE: Cervical spine computed tomography (CT) data of 200 healthy volunteers in 2 years were analyzed. The morphology of the spinal cord was also analyzed. METHODS: The median sagittal diameter and transverse diameter of the spinal canal from C2 to C7 were measured on CT images. The ratio of the median sagittal diameter to the transverse diameter was calculated. Accordingly, the spinal canal shape of each segment was classified into four, and the specific criteria of lunar phase classification were determined through linear discriminant analysis based on the ratio of the median sagittal diameter to the transverse diameter. The inter-rater reliability of the classification was explored using Kappa coefficients. Finally, the morphology of the different segments of the cervical spinal canal in healthy volunteers was revised and compared. RESULTS: According to the ratio of the median sagittal diameter and the transverse diameter of the cervical spinal canal, the lunar phase classification of the cervical bony spinal canal was determined as follows: full-moon >0.65, 0.55< convex-moon ≤0.65, 0.46≤ quarter-moon ≤0.55, and residual-moon <0.46. The Kappa values of C2-C7 were 0.851, 0.958, 0.823, 0.927, 0.793, and 0.946, and the Kappa value of all C2-C7 segments was 0.854 that mainly presented two forms of full-moon (76.5%) and convex-moon (23.0%). A quarter-moon spinal canal was mainly distributed in C3, C4, C5, and C6; a residual-moon spinal canal was mainly distributed in C4 and C5; and the morphological distribution of C4 and C5 were similar (p>0.05). The frequency of the spinal canal of the residual-moon type was the highest, and the full-moon (6.5%) and residual-moon (7.5%) types of C7 were rare. CONCLUSIONS: The morphological classification of the cervical spinal canal was established to present anatomical variations. The classification showed good inter-rater reliability.

10.
ACS Appl Mater Interfaces ; 16(15): 19298-19308, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38568137

RESUMEN

Flexible piezoresistive pressure sensors have received great popularity in flexible electronics due to their simple structure and promising applications in health monitoring and artificial intelligence. However, the contradiction between sensitivity and detection range limits the application of the sensors in the medium-pressure regime. Here, a flexible piezoresistive pressure sensor is fabricated by combining a hierarchical spinous microstructure sensitive layer and a periodic microsphere array spacer. The sensor achieves high sensitivity (39.1 kPa-1) and outstanding linearity (0.99, R2 coefficient) in a medium-pressure regime, as well as a wide range of detection (100 Pa-160.0 kPa), high detection precision (<0.63‰ full scale), and excellent durability (>5000 cycles). The mechanism of the microsphere array spacer in improving sensitivity and detection range was revealed through finite element analysis. Furthermore, the sensors have been utilized to detect muscle and joint movements, spatial pressure distributions, and throat movements during pronouncing words. By means of a full-connect artificial neural network for machine learning, the sensor's output of different pronounced words can be precisely distinguished and classified with an overall accuracy of 96.0%. Overall, the high-performance flexible pressure sensor based on a microsphere array spacer has great potential in health monitoring, human-machine interface, and artificial intelligence of medium-pressure regime.

11.
ACS Nano ; 17(3): 2669-2678, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36695560

RESUMEN

The silicon (Si) anode is widely recognized as the most prospective next-generation anode. To promote the application of Si electrodes, it is imperative to address persistent interface side reactions caused by the huge volume expansion of Si particles. Herein, we introduce beneficial groups of the optimized binder and electrolyte on the Si surface by a co-dissolution method, realizing a "trinity" functional layer composed of azodicarbonamide and 4-nitrobenzenesulfonyl fluoride (AN). The "trinity" functional AN interfacial layer induces beneficial reductive decomposition reactions of the electrolyte and forms a hybrid solid-electrolyte interphase (SEI) skin layer with uniformly distributed organic/inorganic components, which can enhance the mechanical strength of the overall electrode, restrain harmful electrolyte depletion reactions, and maintain efficient ion/electron transport. Hence, the optimized Si@AN11 electrode retains 1407.9 mAh g-1 after 500 cycles and still delivers 1773.5 mAh g-1 at 10 C. In stark contrast, Si anodes have almost no reserved capacity at the same test conditions. Besides, the LiNi0.5Co0.2Mn0.3O2//Si@AN11 full-cell maintains 141.2 mAh g-1 after 350 cycles. This work demonstrates the potential of developing multiple composite artificial layers to modulate the SEI properties of various next-generation electrodes.

12.
Innovation (Camb) ; 4(6): 100522, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37915362

RESUMEN

In thermoelectrics, phase engineering serves a crucial function in determining the power factor by affecting the band degeneracy. However, for low-symmetry compounds, the mainstream one-step phase manipulation strategy, depending solely on the valley or orbital degeneracy, is inadequate to attain a high density-of-states effective mass and exceptional zT. Here, we employ a distinctive two-step phase manipulation strategy through stepwise tailoring chemical bonds in GeSe. Initially, we amplify the valley degeneracy via CdTe alloying, which elevates the crystal symmetry from a covalently bonded orthorhombic to a metavalently bonded rhombohedral phase by significantly suppressing the Peierls distortion. Subsequently, we incorporate Pb to trigger the convergence of multivalence bands and further enhance the density-of-states effective mass by moderately restraining the Peierls distortion. Additionally, the atypical metavalent bonding in rhombohedral GeSe enables a high Ge vacancy concentration and a small band effective mass, leading to increased carrier concentration and mobility. This weak chemical bond along with strong lattice anharmonicity also reduces lattice thermal conductivity. Consequently, this unique property ensemble contributes to an outstanding zT of 0.9 at 773 K for Ge0.80Pb0.20Se(CdTe)0.25. This work underscores the pivotal role of the two-step phase manipulation by stepwise tailoring of chemical bonds in improving the thermoelectric performance of p-bonded chalcogenides.

13.
ACS Omega ; 8(8): 7816-7828, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36872978

RESUMEN

Background: The damage to renal tubular epithelial cells is closely related to the formation of kidney stones. At present, research on drugs that can protect cells from damage remains limited. Methods: This study aims to explore the protective effects of four different sulfate groups (-OSO3 -) of Laminaria polysaccharides (SLPs) on human kidney proximal tubular epithelial (HK-2) cells and determine the difference in the endocytosis of nano-sized calcium oxalate monohydrate (COM) crystals before and after protection. COM with a size of 230 ± 80 nm was used to damage HK-2 cells to establish a damage model. The protection capability of SLPs (LP0, SLP1, SLP2, and SLP3) with -OSO3 - contents of 0.73, 15, 23, and 31%, respectively, against COM crystal damage and the effect of SLPs on the endocytosis of COM crystals were studied. Results: Compared with that of the SLP-unprotected COM-injured group, the cell viability of the SLP-protected group was improved, healing capability was enhanced, cell morphology was restored, production of reactive oxygen species was reduced, mitochondrial membrane potential and lysosome integrity were increased, intracellular Ca2+ level and autophagy were decreased, cell mortality was reduced, and internalized COM crystals were lessened. The capability of SLPs to protect cells from damage and inhibit the endocytosis of crystals in cells enhanced with an increase in the -OSO3 - content of SLPs. Conclusions: SLPs with a high -OSO3 - content may become a potential green drug for preventing the formation of kidney stones.

14.
J Colloid Interface Sci ; 608(Pt 1): 525-535, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34626994

RESUMEN

At present, the magnetic metal/carbon composites have been widely explored for microwave absorption (MA), which effectively integrate the characteristics of magnetic and dielectric materials. As a typical material, metal-organic framework (MOF) shows tremendous potential as a precursor or template. However, its development is limited by the inferior impedance matching. Herein, a novel rod-like Fe/Fe3O4/FeN/N-doped carbon (FON/NC) composite was synthesized via dual-ligand strategy and following calcination. The outer polypyrrole (PPy) shell, obtained by a facile polymerization method, effectively optimized the impedance matching and observably enhanced the MA capacity. Both the multi-component loss mechanism and unique porous core-shell structures of MOF-derived composites were beneficial for microwave attenuation. The effects of filler loadings (20 wt%, 25 wt%, 30 wt% and 35 wt%) on electromagnetic (EM) properties of FON/NC@PPy composites were discussed. Remarkably, as-obtained composites exhibited a minimum reflection loss (RL) value of -60.08 dB at the layer thickness of merely 1.44 mm and the widest effective absorption bandwidth (EAB, RL ≤ -10 dB) of 5.06 GHz at 1.64 mm with 30 wt% filler loading. This work provides a great reference for designing MOF-derived absorbers with high MA performance.

15.
ACS Appl Mater Interfaces ; 14(30): 35246-35254, 2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35875896

RESUMEN

Stabilizing a solid electrolyte interface (SEI) film on the Si surface is a prerequisite for realizing silicon (Si) anode applications. Interfacial engineering is one of the effective strategies to construct stable SEI films on Si surfaces and improve the electrochemical performance of the Si anodes. This work develops a silver (Ag)-decorated mucic acid (MA) buffer interface on the Si surface and the obtained Si@MA*Ag anode retains 1567 mAh g-1 after 500 cycles at 2.1 A g-1 and exhibits 1740 mAh g-1 at 126 A g-1, which are significantly higher than those of the bare Si anode of 247 and 145 mAh g-1 under the same conditions, respectively. Analysis indicates that the improved electrochemical performance is because of the depressed volume effect of the Si particles and the sustained integrity of the electrode laminate during cycling, the enhanced lithium diffusion on the Si surface, and the improved electronic conductivity of the Si anode, as well as the facilitated formation of inorganic components in the SEI film.

16.
Polymers (Basel) ; 14(13)2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35808715

RESUMEN

Polyurea has attracted extensive attention from researchers and engineers in the field of blast and impact protection due to its excellent quasi-static mechanical properties and dynamic mechanical properties. Its mechanical properties and energy absorption capacity have been tuned by means of formulation optimization, molecular dynamics (MD) simulation and the addition of reinforcing materials. Owing to the special molecular structure of polyurea, the mechanism of polyurea protection against blasts and impacts is the simultaneous effect of multiple properties. For different substrates and structures, polyurea needs to provide different performance characteristics, including adhesion, hardness, breaking elongation, etc., depending on the characteristics of the load to which it is subjected. The current article reviews relevant publications in the field of polyurea blast and impact protection, including material optimization, protection mechanisms and applications in blast and impact protection.

17.
Global Spine J ; : 21925682221138261, 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36321883

RESUMEN

STUDY DESIGN: Diagnostic accuracy study. OBJECTIVES: Previous studies have reported the clinical application of the Vertebral Bone Quality (VBQ) scores for assessing bone density in operative lumbar spine patients. We aim to explore whether the method could be modified and applicable for patients undergoing cervical spine surgery. METHODS: Adult patients receiving cervical spine surgery for degenerative diseases between September 2020 and March 2022 with non-contrast T1-weighted MRI and DEXA were included. Correlation between cervical VBQ scores and DEXA T-scores was analyzed using Pearson's correlation. Student's t test was used to present the discrepancy between the VBQ of patients with normal bone density (T ≥ -1.0) and patients with osteopenia/osteoporosis (T < -1.0). Statistical significance was set at P < .05. RESULTS: Eighty-three patients (20 patients with T ≥ -1.0 vs 63 patients with T < -1.0 ) were included. Significant difference was found between the cervical VBQ between groups (2.99 ± .79 vs 3.80 ± .81, P < .001). Interclass correlation coefficient for inter-rater reliability was .82 (95% CI: .70-.93) and .91(95% CI: .84-.97) for intra-rater reliability. The area under the ROC curve was .78 (95% CI: .65-.90). The DEXA T-score of the femoral neck, total hip and the lowest DEXA T-score were found to be significantly correlated with the cervical VBQ score according to Pearson correlation analysis (P < .001). CONCLUSIONS: This is the first study to apply the VBQ method to assess the bone density in preoperative cervical spine patients. Cervical VBQ scores were significantly correlated with DEXA T-score. With an overall accuracy of .78, the radiation-free and cost-effective method could be a potential tool for screening patients with osteopenia and osteoporosis before surgery.

18.
Materials (Basel) ; 15(7)2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35407939

RESUMEN

The mechanical strength, thermal stability, thermal performance, and microstructure of Qtech T26 blast mitigation polyurea (T26 polyurea) were studied using quasi-static and dynamic mechanical experiments, thermogravimetric experiments, differential scanning calorimetry (DSC), scanning electron microscopy (SEM) experiments, and contact explosion and non-contact explosion experiments with polyurea-coated reinforced concrete slabs. Additionally, the energy dissipation mechanism of the coating was analyzed. The blast mitigation ability and blast mitigation mechanism of T26 polyurea-coated reinforced concrete slabs were investigated by analyzing the macroscopic morphology of reinforced concrete slabs with or without coatings and the contact explosion simulation of polyurea-coated reinforced concrete slabs. The results showed that T26 polyurea exhibited a certain strain rate effect. Its initial thermal decomposition temperature reached 286 °C, and its thermal stability was good. After carbonization, carbon slag can form and adhere to the structural surface. The glass transition temperature Tgs of the soft segment was -44.9 °C, and the glass transition temperature Tgh of the hard segment was 36.5 °C, showing a certain amount of microphase separation morphology. After the explosion test, there was a small pit on the front surface of the coated reinforced concrete plate, and there was no damage on the back surface. The integrity of the plate was good. The uncoated reinforced concrete slab had a large crater on the front of the explosion surface, and the back of the explosion surface experienced explosion collapse, concrete crushing, and an overall loss of stability. The numerical simulation results showed that the failure mode of the coated plate was consistent with the test. The kinetic energy conversion rate of the uncoated reinforced concrete plate was 87.27%, and the kinetic energy conversion rate of the coated reinforced concrete plate was 95.36%. The T26 coating improved the kinetic energy conversion rate of the structure and improved the blast mitigation ability of the reinforced concrete plate structure.

19.
Quant Imaging Med Surg ; 12(3): 1977-1987, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35284281

RESUMEN

Background: Vascular injury to the lumbar segmental arteries is a devastating complication in minimally invasive lumbar interbody fusion. Previous studies on the anatomy of the lumbar segmental arteries are limited. This prospective cross-sectional study aims to quantitatively describe the brief trajectory of the lumbar segmental arteries on the left side (SegAL) and to discuss its clinical significance. Methods: One hundred and two asymptomatic volunteers were prospectively enrolled and underwent computed tomography angiography (CTA). Anatomical parameters including the existence rate, relative positions and directions of SegAL were measured. Mann-Whitney U tests were performed, and statistical significance was set at P<0.05. Results: A total of 404 lumbar SegAL were identified. The SegAL of L1, L2 and L3 were identified in all subjects while the L4 SegAL were absent in 9 of 102 (8.8%) and the L5 SegAL were absent in 97 of 102 (95.1%) volunteers. In 25 of 97 (25.8%) volunteers without the L5 SegAL, the branches of the L4 SegAL ran along the disks. Meanwhile, the branches of L3 intersecting over the intervertebral discs (IVD) were found in 8 of 9 (88.9%) subjects without the L4 SegAL and in 4 of 93 (4.3%) subjects with L4 SegAL. The branch angles between the L1, L2 SegAL and the aorta were significantly acute (P<0.05). The L3 SegAL ran approximately vertically with the aorta while the branch angles of the L4 SegAL were significantly blunt (P<0.05). according to the distances measured, on the anterior vertebral walls, the SegAL of L1 and L2 were significantly closer to the inferior vertebral walls than the SegAL of L3 and L4, while on the posterior vertebral walls, the L3 and L4 SegAL were significantly closer to the inferior walls. Conclusions: Arterial branches may course over the L3-4 and L4-5 IVD spaces and the branches over the L3-4 disks are more likely to be present when L4 segmental arteries are absent, thus posing potential risks of arterial complications. Because of the SegAL adjacent to the disks, the risk of arterial injury may be higher anteriorly at L1 and L2 and higher posteriorly at L3 and L4.

20.
ACS Appl Mater Interfaces ; 14(11): 13317-13325, 2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35263082

RESUMEN

Silicon (Si) is deemed to be the next-generation lithium-ion battery anode. However, on account of the poor electronic conductivity of Si materials and the instability of the solid electrolyte interphase layer, the electrochemical performance of Si anodes is far from reaching the application level. In this work, a multifunctional poly(propargylamine) (PPA) interlayer is constructed on the Si surface via a simple in situ polymerization method. Benefiting from the electronic conductivity, ionic conductivity, robust interphase interactions for hydrogen bonding, and stability of multifunctional PPA, the optimized Si@PPA-7% electrode shows improved lithium storage capability. A high capacity of 1316.3 mAh g-1 is retained after 500 cycles at 2.1 A g-1, and 2370.3 mAh g-1 can be delivered at 42 A g-1, which are in stark contrast to the unmodified Si electrode. Furthermore, the rate and cycle capabilities of the LiFePO4//Si@PPA-7% full cell are also obviously better than those of LiFePO4//Si.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA