Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Biol Evol ; 41(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38243866

RESUMEN

Vascular plants have segmented body axes with iterative nodes and internodes. Appropriate node initiation and internode elongation are fundamental to plant fitness and crop yield; however, how these events are spatiotemporally coordinated remains elusive. We show that in barley (Hordeum vulgare L.), selections during domestication have extended the apical meristematic phase to promote node initiation, but constrained subsequent internode elongation. In both vegetative and reproductive phases, internode elongation displays a dynamic proximal-distal gradient, and among subpopulations of domesticated barleys worldwide, node initiation and proximal internode elongation are associated with latitudinal and longitudinal gradients, respectively. Genetic and functional analyses suggest that, in addition to their converging roles in node initiation, flowering-time genes have been repurposed to specify the timing and duration of internode elongation. Our study provides an integrated view of barley node initiation and internode elongation and suggests that plant architecture should be recognized as a collection of dynamic phytomeric units in the context of crop adaptive evolution.


Asunto(s)
Adaptación Biológica , Hordeum , Hordeum/genética , Hordeum/crecimiento & desarrollo , Domesticación
2.
Ann Bot ; 133(7): 983-996, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38407464

RESUMEN

BACKGROUND AND AIMS: Vascular patterning is intimately related to plant form and function. Here, using barley (Hordeum vulgare) as a model, we studied the vascular anatomy of the spike-type inflorescence. The main aim of the present work was to clarify the relationship between rachis (spike axis) vasculature and spike size, to define vascular dynamics and to discuss the implications for transport capacity and its interaction with the spikelets. METHODS: We used serial transverse internode sections to determine the internode area, vascular area and number of veins along the rachis of several barley lines. KEY RESULTS: Internode area and total vascular area show a clear positive correlation with spike size, whereas the number of veins is only weakly correlated. The lateral periphery of the rachis contains large mature veins of constant size, whereas the central part is occupied by small immature veins. Spikelet-derived veins entering the rachis often merge with the immature rachis veins but never merge with the mature veins. An increase in floret fertility through the conversion of a two-rowed barley into an isogenic six-rowed line, in addition to a decrease in floret fertility owing to enhanced pre-anthesis tip degeneration caused by the mutation tip sterile 2.b (tst2.b), significantly affected vein size but had limited to no effects on the number of veins or internode area. CONCLUSIONS: The rachis vasculature is the result of a two-step process involving an initial layout followed by size adjustment according to floret fertility/spike size. The restriction of large mature vessels to the periphery and that of small immature vessels to the centre of the rachis suggests that long-distance transport and local supply to spikelets are spatially separated processes. The identification of spikelet-derived veins entering the rachis without fusing with its vasculature indicates that a vascular continuity between rachis and spikelets might be non-essential.


Asunto(s)
Hordeum , Haz Vascular de Plantas , Hordeum/anatomía & histología , Hordeum/crecimiento & desarrollo , Hordeum/fisiología , Haz Vascular de Plantas/anatomía & histología , Haz Vascular de Plantas/fisiología , Haz Vascular de Plantas/crecimiento & desarrollo , Transporte Biológico , Inflorescencia/anatomía & histología , Inflorescencia/crecimiento & desarrollo , Inflorescencia/fisiología
3.
Annu Rev Plant Biol ; 75(1): 427-458, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38424062

RESUMEN

Florets of cereal crops are the basic reproductive organs that produce grains for food or feed. The birth of a floret progresses through meristem initiation and floral organ identity specification and maintenance. During these processes, both endogenous and external cues can trigger a premature floral organ death, leading to reproductive failure. Recent advances in different cereal crops have identified both conserved and distinct regulators governing the birth of a floret. However, the molecular underpinnings of floral death are just beginning to be understood. In this review, we first provide a general overview of the current findings in the field of floral development in major cereals and outline different forms of floral deaths, particularly in the Triticeae crops. We then highlight the importance of vascular patterning and photosynthesis in floral development and reproductive success and argue for an expanded knowledge of floral birth-death balance in the context of agroecology.


Asunto(s)
Productos Agrícolas , Grano Comestible , Flores , Flores/crecimiento & desarrollo , Flores/fisiología , Flores/genética , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/fisiología , Productos Agrícolas/genética , Grano Comestible/crecimiento & desarrollo , Grano Comestible/fisiología , Fotosíntesis/fisiología , Regulación de la Expresión Génica de las Plantas , Meristema/crecimiento & desarrollo , Meristema/fisiología
4.
Curr Biol ; 34(11): 2344-2358.e5, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38781954

RESUMEN

Inflorescence architecture and crop productivity are often tightly coupled in our major cereal crops. However, the underlying genetic mechanisms controlling cereal inflorescence development remain poorly understood. Here, we identified recessive alleles of barley (Hordeum vulgare L.) HvALOG1 (Arabidopsis thaliana LSH1 and Oryza G1) that produce non-canonical extra spikelets and fused glumes abaxially to the central spikelet from the upper-mid portion until the tip of the inflorescence. Notably, we found that HvALOG1 exhibits a boundary-specific expression pattern that specifically excludes reproductive meristems, implying the involvement of previously proposed localized signaling centers for branch regulation. Importantly, during early spikelet formation, non-cell-autonomous signals associated with HvALOG1 expression may specify spikelet meristem determinacy, while boundary formation of floret organs appears to be coordinated in a cell-autonomous manner. Moreover, barley ALOG family members synergistically modulate inflorescence morphology, with HvALOG1 predominantly governing meristem maintenance and floral organ development. We further propose that spatiotemporal redundancies of expressed HvALOG members specifically in the basal inflorescence may be accountable for proper patterning of spikelet formation in mutant plants. Our research offers new perspectives on regulatory signaling roles of ALOG transcription factors during the development of reproductive meristems in cereal inflorescences.


Asunto(s)
Hordeum , Inflorescencia , Meristema , Proteínas de Plantas , Transducción de Señal , Hordeum/genética , Hordeum/crecimiento & desarrollo , Hordeum/metabolismo , Meristema/crecimiento & desarrollo , Meristema/genética , Meristema/metabolismo , Inflorescencia/crecimiento & desarrollo , Inflorescencia/genética , Inflorescencia/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA