Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 201
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Bioorg Med Chem Lett ; 104: 129711, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38521175

RESUMEN

WRN helicase is a critical protein involved in maintaining genomic stability, utilizing ATP hydrolysis to dissolve DNA secondary structures. It has been identified as a promising synthetic lethal target for microsatellite instable (MSI) cancers. However, few WRN helicase inhibitors have been discovered, and their potential binding sites remain unexplored. In this study, we analyzed potential binding sites for WRN inhibitors and focused on the ATP-binding site for screening new inhibitors. Through molecular dynamics-enhanced virtual screening, we identified two compounds, h6 and h15, which effectively inhibited WRN's helicase and ATPase activity in vitro. Importantly, these compounds selectively targeted WRN's ATPase activity, setting them apart from other non-homologous proteins with ATPase activity. In comparison to the homologous protein BLM, h6 exhibits some degree of selectivity towards WRN. We also investigated the binding mode of these compounds to WRN's ATP-binding sites. These findings offer a promising strategy for discovering new WRN inhibitors and present two novel scaffolds, which might be potential for the development of MSI cancer treatment.


Asunto(s)
Adenosina Trifosfato , Antineoplásicos , Inhibidores Enzimáticos , Simulación de Dinámica Molecular , Helicasa del Síndrome de Werner , Adenosina Trifosfato/química , Sitios de Unión , Helicasa del Síndrome de Werner/antagonistas & inhibidores , Helicasa del Síndrome de Werner/química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Antineoplásicos/química , Antineoplásicos/farmacología , Inestabilidad de Microsatélites/efectos de los fármacos , Neoplasias/genética , Humanos
2.
Bioorg Chem ; 144: 107173, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38335759

RESUMEN

c-MYC is a hallmark of various cancers, playing a critical role in promoting tumorigenesis. The formation of G-quadruplex (G4) in the c-MYC promoter region significantly suppresses its expression. Therefore, developing small-molecule ligands to stabilize c-MYC G4 formation and subsequentially suppress c-MYC expression is an attractive topic for c-MYC-driven cancer therapy. However, achieving selective ligands for c-MYC G4 poses challenges. In this study, we developed a series of triazole-modified quinazoline (TMQ) derivatives as potential c-MYC G4 ligands and c-MYC transcription inhibitors from 4-anilinoquinazoline lead 7a using click chemistry. Importantly, the c-MYC G4 stabilizing ability and antiproliferation activity were well correlated among these new derivatives, particularly in the c-MYC highly expressed colorectal cancer cell line HCT116. Among them, compound A6 exhibited good selectivity in stabilizing c-MYC G4 and in suppressing c-MYC transcription better than 7a. This compound induced G4 formation, selectively inhibited G4-related c-MYC transcription and suppressed the progression of HCT116 cells. These findings identify a new c-MYC transcription inhibitor and provide new insights for optimizing c-MYC G4-targeting ligands.


Asunto(s)
Compuestos de Anilina , Antineoplásicos , G-Cuádruplex , Química Clic , Proteínas Proto-Oncogénicas c-myc , Antineoplásicos/farmacología , Antineoplásicos/química , Quinazolinas/farmacología , Quinazolinas/química , Triazoles/farmacología , Ligandos
3.
Nucleic Acids Res ; 50(8): 4246-4257, 2022 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-35412611

RESUMEN

Ligand-Induced duplex-quadruplex transition within the c-MYC promoter region is one of the most studied and advanced ideas for c-MYC regulation. Despite its importance, there is a lack of methods for monitoring such process in cells, hindering a better understanding of the essence of c-MYC G-quadruplex as a drug target. Here we developed a new fluorescent probe ISCH-MYC for specific c-MYC G-quadruplex recognition based on GTFH (G-quadruplex-Triggered Fluorogenic Hybridization) strategy. We validated that ISCH-MYC displayed distinct fluorescence enhancement upon binding to c-MYC G-quadruplex, which allowed the duplex-quadruplex transition detection of c-MYC G-rich DNA in cells. Using ISCH-MYC, we successfully characterized the induction of duplex to G-quadruplex transition in the presence of G-quadruplex stabilizing ligand PDS and further monitored and evaluated the altered interactions of relevant transcription factors Sp1 and CNBP with c-MYC G-rich DNA. Thus, our study provides a visualization strategy to explore the mechanism of G-quadruplex stabilizing ligand action on c-MYC G-rich DNA and relevant proteins, thereby empowering future drug discovery efforts targeting G-quadruplexes.


Asunto(s)
G-Cuádruplex , Proteínas Proto-Oncogénicas c-myc , ADN/química , ADN/genética , Ligandos , Hibridación de Ácido Nucleico , Proteínas Proto-Oncogénicas c-myc/química , Proteínas Proto-Oncogénicas c-myc/genética
4.
Anal Chem ; 95(45): 16609-16617, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37917789

RESUMEN

Mitochondrion-lysosome interactions have garnered significant attention in recent research. Numerous studies have shown that mitochondrion-lysosome interactions, including mitochondrion-lysosome contact (MLC) and mitophagy, are involved in various biological processes and pathological conditions. Single fluorescent probes are termed a pivotal chemical tool in unraveling the intricate spatiotemporal interorganelle interplay in live cells. However, current chemical tools are insufficient to deeply understand mitochondrion-lysosome dynamic interactions and related diseases, Moreover, the rational design of mitochondrion-lysosome dual-targeting fluorescent probes is intractable. Herein, we designed and synthesized a pH-sensitive fluorescent probe called INSA, which could simultaneously light up mitochondria (red emission) and lysosomes (green emission) for their internal pH differences. Employing INSA, we successfully recorded long-term dynamic interactions between lysosomes and mitochondria. More importantly, the increasing mitochondrion-lysosome interactions in ferroptotic cells were also revealed by INSA. Further, we observed pH variations in mitochondria and lysosomes during ferroptosis for the first time. In brief, this work not only introduced a pH-sensitive fluorescent probe INSA for the disclosure of the mitochondrion-lysosome dynamic interplays but also pioneered the visualization of the organellar pH alternation in a specific disease model.


Asunto(s)
Colorantes Fluorescentes , Lisosomas , Humanos , Colorantes Fluorescentes/metabolismo , Lisosomas/metabolismo , Mitocondrias , Células HeLa , Concentración de Iones de Hidrógeno
5.
Analyst ; 148(10): 2343-2351, 2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37185609

RESUMEN

Helicases are crucial enzymes in DNA and RNA metabolism and function by unwinding particular nucleic acid structures. However, most convenient and high-throughput helicase assays are limited to the typical duplex DNA. Herein, we developed an immunosorbent assay to monitor the Werner syndrome (WRN) helicase unwinding a wide range of DNA structures, such as a replication fork, a bubble, Holliday junction, G-quadruplex and hairpin. This assay could sensitively detect the unwinding of DNA structures with detection limits around 0.1 nM, and accurately monitor the substrate-specificity of WRN with a comparatively less time-consuming and high throughput process. Remarkably, we have established that this new assay was compatible in evaluating helicase inhibitors and revealed that the inhibitory effect was substrate-dependent, suggesting that diverse substrate structures other than duplex structures should be considered in discovering new inhibitors. Our study provided a foundational example for using this new assay as a powerful tool to study helicase functions and discover potent inhibitors.


Asunto(s)
RecQ Helicasas , Síndrome de Werner , Humanos , RecQ Helicasas/genética , RecQ Helicasas/metabolismo , Inmunoadsorbentes , Replicación del ADN , Helicasa del Síndrome de Werner/genética , Helicasa del Síndrome de Werner/metabolismo , Exodesoxirribonucleasas/metabolismo , ADN/química , Síndrome de Werner/genética
6.
J Nat Prod ; 86(12): 2691-2702, 2023 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-37974450

RESUMEN

Thirteen new Euphorbia diterpenoids, euphylonanes A-M (1-13), and eight known ones were isolated from the whole plants of Euphorbia hylonoma. Compounds 1 and 2 are two rearranged ingenanes bearing a rare 6/6/7/3-fused ring system. Compound 3 represents the first example of a 9,10-epoxy tigliane, while 4-21 are typical ingenanes varying with substituents. Structures were elucidated using a combination of spectroscopic, computational, and chemical methods. Most ingenanes exerted a significant antiadipogenic effect in 3T3-L1 adipocytes, among which 4 was the most active with an EC50 value of 0.60 ± 0.27 µM. Mechanistic study revealed that 4 inhibited the adipogenesis and lipogenesis in adipocytes via activation of the AMPK signaling pathway.


Asunto(s)
Diterpenos , Euphorbia , Forboles , Euphorbia/química , Diterpenos/farmacología , Diterpenos/química , Adipogénesis , Estructura Molecular
7.
Bioorg Chem ; 136: 106526, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37058782

RESUMEN

Two series of novel acridone derivatives were designed and synthesized, with their anticancer activity evaluated. Most of these compounds showed potent antiproliferative activity against cancer cell lines. Among them, compound C4 with dual 1,2,3-triazol moieties exhibited the most potent activity against Hep-G2 cells with IC50 value determined to be 6.29 ± 0.93 µM. Subsequent experiments showed that C4 could bind to and destabilize Kras gene promoter i-motif structure without significant interaction with its corresponding G-quadruplex. C4 could down-regulate Kras expression in Hep-G2 cells, possibly due to its interaction with the Kras i-motif. Further cellular studies indicated that C4 could induce apoptosis of Hep-G2 cells, possibly related to its effect on mitochondrial dysfunction. These results indicated that C4 could be further developed as a promising anticancer agent.


Asunto(s)
Antineoplásicos , Estructura Molecular , Relación Estructura-Actividad , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Antineoplásicos/farmacología , Antineoplásicos/química , Acridonas/farmacología , Proliferación Celular , Apoptosis
8.
Molecules ; 28(14)2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37513470

RESUMEN

MSN8C, an analog of mansonone E, has been identified as a novel catalytic inhibitor of human DNA topoisomerase II that induces tumor regression and differs from VP-16(etoposide). Treatment with MSN8C showed significant antiproliferative activity against eleven human tumor cell lines in vitro. It was particularly effective against the HL-60/MX2 cell line, which is resistant to Topo II poisons. The resistance factor (RF) of MSN8C for Topo II in HL-60/MX2 versus HL-60 was 1.7, much lower than that of traditional Topo II poisons. Furthermore, in light of its potent antitumor efficacy and low toxicity, as demonstrated in the A549 tumor xenograft model, MSN8C has been identified as a promising candidate for antitumor applications.


Asunto(s)
Antineoplásicos , ADN-Topoisomerasas de Tipo II , Humanos , ADN-Topoisomerasas de Tipo II/metabolismo , Inhibidores de Topoisomerasa II/farmacología , Etopósido/farmacología , Línea Celular Tumoral , Células HL-60 , Antineoplásicos/farmacología
9.
Molecules ; 28(6)2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36985661

RESUMEN

Mitochondria have a crucial role in regulating energy metabolism and their dysfunction has been linked to tumorigenesis. Cancer diagnosis and intervention have a great interest in the development of new agents that target biomolecules within mitochondria. However, monitoring and modulating mitochondria RNA (mtRNA), an essential component in mitochondria, in cells is challenging due to limited functional research and the absence of targeting agents. In this study, we designed and synthesized a fluorescent quinolinium derivative, QUCO-1, which actively lit up with mtRNA in both normal and cancer cells in vitro. Additionally, we evaluated the function of QUCO-1 as an mtRNA ligand and found that it effectively induced severe mitochondrial dysfunction and OXPHOS inhibition in RKO colorectal cancer cells. Treatment with QUCO-1 resulted in apoptosis, cell cycle blockage at the G2/M phase, and the effective inhibition of cell proliferation. Our findings suggest that QUCO-1 has great potential as a promising probe and therapeutic agent for mtRNA, with the potential for treating colorectal cancer.


Asunto(s)
Neoplasias Colorrectales , Mitocondrias , Humanos , ARN Mitocondrial/metabolismo , Mitocondrias/metabolismo , Proliferación Celular , Apoptosis , Colorantes Fluorescentes/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Línea Celular Tumoral
10.
Pharmacol Res ; 177: 106136, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35202821

RESUMEN

Promoting energy expenditure is known to curb obesity and can be exploited for its treatment. Our previous study has demonstrated that activation of HSF1/PGC-1α axis efficiently induced mitochondrial biogenesis and adaptive oxidation and thus ameliorating lipid accumulation, however, whether it can be a therapeutic approach for metabolic disorders treatment needs explored. Here, a high-efficient and specific HSF1/PGC-1α activator screening system was established and the natural clinical liver-protecting agent matrine was identified as a robust HSF1/PGC-1α activator. Matrine treatment efficiently induced mitogenesis and thermogenic program in primary mouse adipose stem cell derived adipocytes by enriching HSF1 to the promoter of Pgc-1α. Deficiency of PGC-1α in adipocytes diminished the browning induction ability of matrine. Oral administration of matrine to the obese mice induced by high fat and high cholesterol diet increased energy expenditure and corrected the degeneration of thermogenesis in brown adipose tissue (BAT). Also, matrine treatment markedly induced the transformation of brown-like adipocytes in subcutaneous white adipose tissue (sWAT) via a mechanism of HSF1/PGC-1α, thereby attenuating obesity and myriads of metabolic disorders. This led to an improvement in adaptive thermogenesis to cold stimuli. These findings are of great significance in understanding the regulation mechanisms of the HSF1/PGC-1α axis in thermogenesis and providing a novel therapeutic approach for obesity treatment. Matrine may have potential therapeutic implications for the treatment of obesity in clinics.


Asunto(s)
Tejido Adiposo Pardo , Termogénesis , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Alcaloides , Animales , Metabolismo Energético , Factores de Transcripción del Choque Térmico/metabolismo , Ratones , Ratones Endogámicos C57BL , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Quinolizinas , Matrinas
11.
Bioorg Med Chem Lett ; 70: 128801, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35597422

RESUMEN

Benzothiazolium and benzoxazolium are common groups for the construction of hemicyanine dyes; however, their isosteric analogue benzoselenazolium have rarely been studied. Here, we report the development of the first benzoselenazolium-based hemicyanine dye for the selective detection of G-quadruplexes. This molecule, SEMA-1, was validated as a red-emitting and activatable fluorescent probe whose fluorescence would only be activated in the presence of G-quadruplexes in buffer solution. Consistent with this, SEMA-1 was found to accumulate in nucleoli and could be used to detect the high abundance of nucleolar rDNA and rRNA G-quadruplexes in fixed HeLa cells. On the other hand, due to the retained mitochondrial membrane potential in live HeLa cells, SEMA-1 was captured by mitochondria and had the potential to detect the mitochondrial G-quadruplexes. Collectively, this work demonstrates the value of developing G-quadruplex-specific fluorescent probes from novel benzoselenazolium-based hemicyanine scaffold.


Asunto(s)
G-Cuádruplex , Carbocianinas , Colorantes Fluorescentes , Células HeLa , Humanos
12.
Org Biomol Chem ; 20(3): 553-557, 2022 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-34932056

RESUMEN

The indolyl-4(3H)-quinazolinone core is an important structural motif in functional molecules. However, few methods exist for its direct modification, which limits its potential application. Reported herein is a palladium-mediated amination of halogen-containing indolyl-4(3H)-quinazolinones with a variety of primary and secondary amines via the corresponding palladium oxidative addition complexes. The protocol allows the facile synthesis of indolyl-4(3H)-quinazolinone derivatives with amino groups at all the positions of the benzene ring in moderate to good yields with mild reaction conditions and good functional group tolerance. Furthermore, the antitumor activity of these products was evaluated.


Asunto(s)
Antineoplásicos/farmacología , Complejos de Coordinación/farmacología , Paladio/farmacología , Quinazolinonas/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Complejos de Coordinación/síntesis química , Complejos de Coordinación/química , Ensayos de Selección de Medicamentos Antitumorales , Células HCT116 , Humanos , Oxidación-Reducción , Paladio/química , Quinazolinonas/química
13.
Nucleic Acids Res ; 48(15): 8255-8268, 2020 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-32710621

RESUMEN

Nonalcoholic fatty liver disease (NAFLD)/nonalcoholic steatohepatitis (NASH) are global epidemic public health problems with pathogenesis incompletely understood. Hepatocyte excessive apoptosis is a significant symbol for NAFLD/NASH patients, and therefore anti-apoptosis therapy could be used for NAFLD/NASH treatment. Up-regulation of BCL-2 has been found to be closely related with anti-apoptosis. BCL-2 gene promoter region has a C-rich sequence, which can form i-motif structure and play important role in regulating gene transcription. In this study, after extensive screening and evaluation, we found that acridone derivative A22 could up-regulate BCL-2 transcription and translation in vitro and in cells through selective binding to and stabilizing BCL-2 gene promoter i-motif. Our further experiments showed that A22 could reduce hepatocyte apoptosis in NAFLD/NASH model possibly through up-regulating BCL-2 expression. A22 could reduce inflammation, endoplasmic reticulum stress and cirrhosis in high-fat diet-fed mice liver model. Our findings provide a potentially new approach of anti-apoptosis for NAFLD/NASH treatment, and A22 could be further developed as a lead compound for NAFLD/NASH therapy. Our present study first demonstrated that gene promoter i-motif could be targeted for gene up-regulation for extended treatment of other important diseases besides cancer.


Asunto(s)
Acridonas/uso terapéutico , Genes bcl-2 , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/genética , Regulación hacia Arriba/efectos de los fármacos , Animales , Apoptosis , Línea Celular Tumoral , Dieta Alta en Grasa , Humanos , Hígado/efectos de los fármacos , Hígado/patología , Masculino , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/patología , Regiones Promotoras Genéticas/efectos de los fármacos
14.
Int J Mol Sci ; 23(7)2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35409230

RESUMEN

I-motifs play key regulatory roles in biological processes, holding great potential as attractive therapeutic targets. In the present study, we developed a novel fluorescent probe G59 with strong and selective binding to the c-myc gene promoter i-motif. G59 had an i-motif-binding carbazole moiety conjugated with naphthalimide fluorescent groups. G59 could differentiate the c-myc i-motif from other DNA structures through selective activation of its fluorescence, with its apparent visualization in solution. The smart probe G59 showed excellent sensitivity, with a low fluorescent detection limit of 154 nM and effective stabilization to the c-myc i-motif. G59 could serve as a rapid and sensitive probe for label-free screening of selective c-myc i-motif binding ligands under neutral crowding conditions. To the best of our knowledge, G59 is the first fluorescent probe with high sensitivity for recognizing the i-motif structure and screening for selective binding ligands.


Asunto(s)
Colorantes Fluorescentes , G-Cuádruplex , Colorantes Fluorescentes/química , Genes myc , Ligandos , Naftalimidas , Proteínas Proto-Oncogénicas c-myc/genética
15.
Molecules ; 27(17)2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-36080326

RESUMEN

Topo II and Hsp90 are promising targets. In this study, we first verified the structural similarities between Topo IIα ATPase and Hsp90α N-ATPase. Subsequently, 720 compounds from the Food and Drug Administration (FDA) drug library and kinase library were screened using the malachite green phosphate combination with the Topo II-mediated DNA relaxation and MTT assays. Subsequently, the antimalarial drug quinacrine was found to be a potential dual-target inhibitor of Topo II and Hsp90. Mechanistic studies showed that quinacrine could specifically bind to the Topo IIα ATPase domain and inhibit the activity of Topo IIα ATPase without impacting DNA cleavage. Furthermore, our study revealed that quinacrine could bind Hsp90 N-ATPase and inhibit Hsp90 activity. Significantly, quinacrine has broad antiproliferation activity and remains sensitive to the multidrug-resistant cell line MCF-7/ADR and the atypical drug-resistant tumor cell line HL-60/MX2. Our study identified quinacrine as a potential dual-target inhibitor of Topo II and Hsp90, depending on the ATP-binding domain, positioning it as a hit compound for further structural modification.


Asunto(s)
Antineoplásicos , Neoplasias , Adenosina Trifosfatasas/metabolismo , Antígenos de Neoplasias/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacología , Línea Celular Tumoral , ADN-Topoisomerasas de Tipo II/metabolismo , Reposicionamiento de Medicamentos , Proteínas HSP90 de Choque Térmico , Quinacrina/farmacología
16.
Molecules ; 27(20)2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36296519

RESUMEN

RNA imaging is of great importance for understanding its complex spatiotemporal dynamics and cellular functions. Considerable effort has been devoted to the development of small-molecule fluorescent probes for RNA imaging. However, most of the reported studies have mainly focused on improving the photostability, permeability, long emission wavelength, and compatibility with live-cell imaging of RNA probes. Less attention has been paid to the selectivity and detection limit of this class of probes. Highly selective and sensitive RNA probes are still rarely available. In this study, a new set of styryl probes were designed and synthesized, with the aim of upgrading the detection limit and maintaining the selectivity of a lead probe QUID-1 for RNA. Among these newly synthesized compounds, QUID-2 was the most promising candidate. The limit of detection (LOD) value of QUID-2 for the RNA was up to 1.8 ng/mL in solution. This property was significantly improved in comparison with that of QUID-1. Further spectroscopy and cell imaging studies demonstrated the advantages of QUID-2 over a commercially available RNA staining probe, SYTO RNASelect, for highly selective and sensitive RNA imaging. In addition, QUID-2 exhibited excellent photostability and low cytotoxicity. Using QUID-2, the global dynamics of RNA were revealed in live cells. More importantly, QUID-2 was found to be potentially applicable for detecting RNA granules in live cells. Collectively, our work provides an ideal probe for RNA imaging. We anticipate that this powerful tool may create new opportunities to investigate the underlying roles of RNA and RNA granules in live cells.


Asunto(s)
Colorantes Fluorescentes , ARN , Colorantes Fluorescentes/química , Sondas ARN , Imagen Molecular
17.
J Am Chem Soc ; 143(49): 20779-20791, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34865478

RESUMEN

The mitochondrial DNA G-quadruplex (mtDNA G4) is a potential regulatory element for the regulation of mitochondrial functions; however, its relevance and specific roles in diseases remain largely unknown. Here, we engineered a set of chemical probes, including MitoISCH, an mtDNA G4-specific fluorescent probe, together with MitoPDS, a mitochondria-targeted G4-stabilizing agent, to thoroughly investigate mtDNA G4s. Using MitoISCH to monitor previously intractable dynamics of mtDNA G4s, we surprisingly found that their formation was prevalent only in endothelial and cancer cells that rely on glycolysis for energy production. Consistent with this, promotion of mtDNA G4 folding by MitoPDS in turn caused glycolysis-related gene activation and glycolysis enhancement. Remarkably, this close relationship among mtDNA G4s, glycolysis, and cancer cells further allowed MitoISCH to accumulate in tumors and label them in vivo. Our work reveals an unprecedented link between mtDNA G4s and cell glycolysis, suggesting that mtDNA G4s may be a novel cancer biomarker and therapeutic target deserving further exploration.


Asunto(s)
ADN Mitocondrial/metabolismo , Colorantes Fluorescentes/química , G-Cuádruplex , Glucólisis/fisiología , Células 3T3 , Animales , Línea Celular Tumoral , ADN Mitocondrial/genética , Células Endoteliales/metabolismo , Humanos , Ratones , Ratones Desnudos , Mitocondrias/metabolismo
18.
Anal Chem ; 93(49): 16297-16301, 2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34843219

RESUMEN

Because of the lack of facile and accurate methods to track stress granule (SG) dynamics in live cells and in vivo, in-depth studies of the biological roles of this attractive membraneless organelle have been limited. Herein, we report the first small-molecule probe, TASG, for the selective, convenient and real-time monitoring of SGs. This novel molecule can simultaneously bind to SG RNAs, the core SG protein G3BP1, and their complexes, triggering a significant enhancement in fluorescence intensity, making TASG broadly applicable to SG imaging under various stress conditions in fixed and live cells, ex vivo and in vivo. Using TASG, the complicated endogenous SG dynamics were revealed in both live cells and C. elegans. Collectively, our work provides an ideal probe that has thus far been absent in the field of SG investigations. We anticipate that this powerful tool may create exciting opportunities to investigate the underlying roles of SGs in different organisms.


Asunto(s)
Condensados Biomoleculares , Caenorhabditis elegans , Animales , ADN Helicasas , Proteínas de Unión a Poli-ADP-Ribosa , ARN Helicasas , Proteínas con Motivos de Reconocimiento de ARN , Gránulos de Estrés
19.
J Org Chem ; 86(9): 6800-6812, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33899472

RESUMEN

A hypervalent iodine(III)-mediated ring-contractive fluorination reaction of 2-alkylidenecyclobutanol derivatives is presented. The protocol allows the facile synthesis of ß-monofluorinated cyclopropanecarbaldehydes via a fluorination/semipinacol rearrangement cascade using nucleophilic Py·HF as the fluorine source. For challenging electron-rich arene substrates, the installation of a protecting group on the free alcohol is pivotal for maintaining the reaction efficiency. The synthetic utility was demonstrated by the scalability of this reaction and further transformations of the products.


Asunto(s)
Halogenación , Yodo , Ciclohexenos , Estructura Molecular
20.
RNA Biol ; 18(12): 2261-2277, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33749516

RESUMEN

Telomere is a specialized DNA-protein complex that plays an important role in maintaining chromosomal integrity. Shelterin is a protein complex formed by six different proteins, with telomeric repeat factors 1 (TRF1) and 2 (TRF2) binding to double-strand telomeric DNA. Telomeric DNA consists of complementary G-rich and C-rich repeats, which could form G-quadruplex and intercalated motif (i-motif), respectively, during cell cycle. Its G-rich transcription product, telomeric repeat-containing RNA (TERRA), is essential for telomere stability and heterochromatin formation. After extensive screening, we found that acridine derivative 2c and acridine dimer DI26 could selectively interact with TRF1 and telomeric i-motif, respectively. Compound 2c blocked the binding of TRF1 with telomeric duplex DNA, resulting in up-regulation of TERRA. Accumulated TERRA could bind with TRF1 at its allosteric site and further destabilize its binding with telomeric DNA. In contrast, DI26 could destabilize telomeric i-motif, resulting in down-regulation of TERRA. Both compounds exhibited anti-tumour activity for A549 cells, but induced different DNA damage pathways. Compound 2c significantly suppressed tumour growth in A549 xenograft mouse model. The function of telomeric i-motif structure was first studied with a selective binding ligand, which could play an important role in regulating TERRA transcription. Our results showed that appropriate level of TERRA transcript could be important for stability of telomere, and acridine derivatives could be further developed as anti-cancer agents targeting telomere. This research increased understanding for biological roles of telomeric i-motif, TRF1 and TERRA, as potential anti-cancer drug targets.


Asunto(s)
Acridinas/administración & dosificación , Neoplasias Pulmonares/tratamiento farmacológico , ARN Largo no Codificante/genética , Bibliotecas de Moléculas Pequeñas/administración & dosificación , Proteína 1 de Unión a Repeticiones Teloméricas/química , Proteína 1 de Unión a Repeticiones Teloméricas/metabolismo , Células A549 , Acridinas/química , Acridinas/farmacología , Animales , Sitios de Unión , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias Pulmonares/genética , Ratones , Estructura Molecular , Trasplante de Neoplasias , Unión Proteica , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Proteína 2 de Unión a Repeticiones Teloméricas/química , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo , Transcripción Genética/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA