Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 628(8008): 515-521, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38509374

RESUMEN

The convergence of topology and correlations represents a highly coveted realm in the pursuit of new quantum states of matter1. Introducing electron correlations to a quantum spin Hall (QSH) insulator can lead to the emergence of a fractional topological insulator and other exotic time-reversal-symmetric topological order2-8, not possible in quantum Hall and Chern insulator systems. Here we report a new dual QSH insulator within the intrinsic monolayer crystal of TaIrTe4, arising from the interplay of its single-particle topology and density-tuned electron correlations. At charge neutrality, monolayer TaIrTe4 demonstrates the QSH insulator, manifesting enhanced nonlocal transport and quantized helical edge conductance. After introducing electrons from charge neutrality, TaIrTe4 shows metallic behaviour in only a small range of charge densities but quickly goes into a new insulating state, entirely unexpected on the basis of the single-particle band structure of TaIrTe4. This insulating state could arise from a strong electronic instability near the van Hove singularities, probably leading to a charge density wave (CDW). Remarkably, within this correlated insulating gap, we observe a resurgence of the QSH state. The observation of helical edge conduction in a CDW gap could bridge spin physics and charge orders. The discovery of a dual QSH insulator introduces a new method for creating topological flat minibands through CDW superlattices, which offer a promising platform for exploring time-reversal-symmetric fractional phases and electromagnetism2-4,9,10.

2.
Nano Lett ; 24(29): 8795-8800, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38985646

RESUMEN

Long-life interlayer excitons (IXs) in transition metal dichalcogenide (TMD) heterostructure are promising for realizing excitonic condensates at high temperatures. Critical to this objective is to separate the IX ground state (the lowest energy of IX state) emission from other states' emissions. Filtering the IX ground state is also essential in uncovering the dynamics of correlated excitonic states, such as the excitonic Mott insulator. Here, we show that the IX ground state in the WSe2/MoS2 heterobilayer can be separated from other states by its spatial profile. The emissions from different moiré IX modes are identified by their different energies and spatial distributions, which fits well with the rate-diffusion model for cascading emission. Our results show spatial filtering of the ground state mode and enrich the toolbox to realize correlated states at elevated temperatures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA