Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 80(6): 1810-20, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24389927

RESUMEN

The objective of this study was to characterize fungal communities in a subsurface environment cocontaminated with uranium and nitrate at the watershed scale and to determine the potential contribution of fungi to contaminant transformation (nitrate attenuation). The abundance, distribution, and diversity of fungi in subsurface groundwater samples were determined using quantitative and semiquantitative molecular techniques, including quantitative PCR of eukaryotic small-subunit rRNA genes and pyrosequencing of fungal internal transcribed spacer (ITS) regions. Potential bacterial and fungal denitrification was assessed in sediment-groundwater slurries amended with antimicrobial compounds and in fungal pure cultures isolated from the subsurface. Our results demonstrate that subsurface fungal communities are dominated by members of the phylum Ascomycota, and a pronounced shift in fungal community composition occurs across the groundwater pH gradient at the field site, with lower diversity observed under acidic (pH <4.5) conditions. Fungal isolates recovered from subsurface sediments, including cultures of the genus Coniochaeta, which were detected in abundance in pyrosequence libraries of site groundwater samples, were shown to reduce nitrate to nitrous oxide. Denitrifying fungal isolates recovered from the site were classified and found to be distributed broadly within the phylum Ascomycota and within a single genus of the Basidiomycota. Potential denitrification rate assays with sediment-groundwater slurries showed the potential for subsurface fungi to reduce nitrate to nitrous oxide under in situ acidic pH conditions.


Asunto(s)
Biodiversidad , Hongos/clasificación , Hongos/metabolismo , Nitratos/metabolismo , Uranio/metabolismo , Microbiología del Agua , Contaminantes del Agua/metabolismo , Análisis por Conglomerados , ADN de Hongos/química , ADN de Hongos/genética , ADN Ribosómico/química , ADN Ribosómico/genética , ADN Espaciador Ribosómico/química , ADN Espaciador Ribosómico/genética , Hongos/genética , Hongos/aislamiento & purificación , Genes de ARNr , Datos de Secuencia Molecular , Filogenia , Fuerza Protón-Motriz , ARN de Hongos/genética , ARN Ribosómico 18S/genética , Análisis de Secuencia de ADN
2.
Appl Environ Microbiol ; 78(4): 1039-47, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22179233

RESUMEN

The effect of long-term mixed-waste contamination, particularly uranium and nitrate, on the microbial community in the terrestrial subsurface was investigated at the field scale at the Oak Ridge Integrated Field Research Challenge (ORIFRC) site in Oak Ridge, TN. The abundance, community composition, and distribution of groundwater microorganisms were examined across the site during two seasonal sampling events. At representative locations, subsurface sediment was also examined from two boreholes, one sampled from the most heavily contaminated area of the site and another from an area with low contamination. A suite of DNA- and RNA-based molecular tools were employed for community characterization, including quantitative PCR of rRNA and nitrite reductase genes, community composition fingerprinting analysis, and high-throughput pyrotag sequencing of rRNA genes. The results demonstrate that pH is a major driver of the subsurface microbial community structure and that denitrifying bacteria from the genus Rhodanobacter (class Gammaproteobacteria) dominate at low pH. The relative abundance of bacteria from this genus was positively correlated with lower-pH conditions, and these bacteria were abundant and active in the most highly contaminated areas. Other factors, such as the concentration of nitrogen species, oxygen level, and sampling season, did not appear to strongly influence the distribution of Rhodanobacter bacteria. The results indicate that these organisms are acid-tolerant denitrifiers, well suited to the acidic, nitrate-rich subsurface conditions, and pH is confirmed as a dominant driver of bacterial community structure in this contaminated subsurface environment.


Asunto(s)
Biota , Agua Subterránea/microbiología , Contaminantes Radiactivos del Suelo/metabolismo , Xanthomonadaceae/clasificación , Xanthomonadaceae/aislamiento & purificación , ADN Bacteriano/genética , Desnitrificación , Agua Subterránea/química , Concentración de Iones de Hidrógeno , Metagenoma , Metagenómica/métodos , Nitrógeno/análisis , Oxígeno/análisis , ARN Bacteriano/genética , Residuos Radiactivos , Xanthomonadaceae/metabolismo
3.
Endocrinology ; 149(3): 1277-94, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18079195

RESUMEN

The relaxin receptor [leucine-rich repeat-containing G protein-coupled receptor 7 (LGR7)] belongs to the leucine-rich repeat containing G protein-coupled receptors subgroup C. Three new LGR7 splice variants have been cloned from the human fetal membranes and shown to be truncated versions of the full-length receptor, encoded by different lengths of the extracellular domain. The expression of their mRNAs has been confirmed by both qualitative and quantitative PCR and shown to be higher in the chorion and decidua before, compared with after, spontaneous labor. When HEK293 cells were transfected with each LGR7 splice variant, their proteins were retained within the endoplasmic reticulum. However, the protein for the shortest variant was also secreted into the medium. We have characterized the intracellular functions and effects of these LGR7 variants on the function of the wild-type (WT)-LGR7. In coexpression studies, each splice variant interacted directly with the WT-LGR7 and exerted a dominant-negative effect on cAMP accumulation by the WT-LGR7 after relaxin treatment. This interaction resulted in the sequestration of the WT-LGR7 inside the cells by down-regulation of its maturation and cell surface delivery. The constitutive homodimerization of WT-LGR7 has been shown here to take place in the endoplasmic reticulum, and the presence of any one of the splice variants decreased this by the formation of heterodimers with the WT-LGR7, supporting the view that homodimerization is a prerequisite for receptor trafficking to the cell surface. These data suggest that the dominant-negative effects of the LGR7 splice variants expressed in the chorion and decidua could be functionally significant in the peripartal period by inhibiting the function of WT-LGR7 and dampening the responsiveness of these tissues to endogenous relaxin.


Asunto(s)
Membranas Extraembrionarias/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Péptidos/genética , Receptores de Péptidos/metabolismo , Línea Celular , Membrana Celular/metabolismo , Corion/metabolismo , Decidua/metabolismo , Dimerización , Retículo Endoplásmico/metabolismo , Femenino , Humanos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA