Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Chemistry ; 30(33): e202400608, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38604947

RESUMEN

For a comparison of the interaction modes of various chalcogen-bond donors, 2-chalcogeno-imidazolium salts have been designed, synthesized, and studied by single crystal X-ray diffraction, solution NMR and DFT as well as for their ability to act as activators in an SN1-type substitution reaction. Their interaction modes in solution were elucidated based on NMR diffusion and chemical shift perturbation experiments, which were supported by DFT-calculations. Our finding is that going from lighter to the heavier chalcogens, hydrogen bonding plays a less, while chalcogen bonding an increasingly important role for the coordination of anions. Anion-π interactions also show importance, especially for the sulfur and selenium derivatives.

2.
Nature ; 564(7735): 240-243, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30542163

RESUMEN

Chiral compounds exist as enantiomers that are non-superimposable mirror images of each other. Owing to the importance of enantiomerically pure chiral compounds1-for example, as active pharmaceutical ingredients-separation of racemates (1:1 mixtures of enantiomers) is extensively performed2. Frequently, however, only a single enantiomeric form of a chiral compound is required, which raises the question of how a racemate can be selectively converted into a single enantiomer. Such a deracemization3 process is entropically disfavoured and cannot be performed by a conventional catalyst in solution. Here we show that it is possible to photochemically deracemize chiral compounds with high enantioselectivity using irradiation with visible light (wavelength of 420 nanometres) in the presence of catalytic quantities (2.5 mole per cent) of a chiral sensitizer. We converted an array of 17 chiral racemic allenes into the respective single enantiomers with 89 to 97 per cent enantiomeric excess. The sensitizer is postulated to operate by triplet energy transfer to the allene, with different energy-transfer efficiencies for the two enantiomers. It thus serves as a unidirectional catalyst that converts one enantiomer but not the other, and the decrease in entropy is compensated by light energy. Photochemical deracemization enables the direct formation of enantiopure materials from a racemic mixture of the same compound, providing a novel approach to the challenge of creating asymmetry.

3.
Angew Chem Int Ed Engl ; : e202404823, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38728623

RESUMEN

The use of noncovalent interactions based on electrophilic halogen, chalcogen, pnictogen, or tetrel centers in organocatalysis has gained noticeable attention. Herein, we provide an overview on the most important developments in the last years with a clear focus on experimental studies and on catalysts which act via such non-transient interactions.

4.
Chemistry ; 29(3): e202203149, 2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36239437

RESUMEN

Carbenes with conjugatively connected redox system act as "auto-umpolung" ligands. Due to their electronic flexibility, they should also be particularly suitable to stabilize open-shell species. Herein, the first neutral radical of such sort is described in form of a dialkylamino-substituted bis(dicyanomethylene)cyclopropanide. Despite the absence of steric shielding, the radical is stable for an extended amount of time and was consequently characterized in solution via EPR measurements. These data and accompanying X-ray structural analyses indicate that the radical species is in equilibrium with aggregates (formed via π-stacking) and dimers (obtained via σ-bond formation between methylene carbons).


Asunto(s)
Ligandos , Oxidación-Reducción
5.
Chemphyschem ; 24(1): e202200634, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36043491

RESUMEN

Cyclic diaryliodonium compounds like iodolium derivatives have increasingly found use as noncovalent Lewis acids in the last years. They are more stable toward nucleophilic substitution than acyclic systems and are markedly more Lewis acidic. Herein, this higher Lewis acidity is analyzed and explained via quantum-chemical calculations and energy decomposition analyses. Its key origin is the change in energy levels and hybridization of iodine's orbitals, leading to both more favorable electrostatic interaction and better charge transfer. Both of the latter seem to contribute in similar fashion, while hydrogen bonding as well as steric repulsion with the phenyl rings play at best a minor role. In comparison to iodolium, bromolium and chlorolium are less Lewis acidic the lighter the halogen, which is predominantly based on less favorable charge-transfer interactions.


Asunto(s)
Halógenos , Ácidos de Lewis , Ácidos de Lewis/química , Modelos Moleculares , Halógenos/química , Iones , Termodinámica
6.
Chemistry ; 28(47): e202200917, 2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-35704037

RESUMEN

Recently, chalcogen bonding has been investigated in more detail in organocatalysis and the scope of activated functionalities continues to increase. Herein, the activation of imines in a Povarov [4+2] cycloaddition reaction with bidentate cationic chalcogen bond donors is presented. Tellurium-based Lewis acids show superior properties compared to selenium-based catalysts and inactive sulfur-based analogues. The catalytic activity of the chalcogen bonding donors increases with weaker binding anions. Triflate, however, is not suitable due to its participation in the catalytic pathway. A solvent screening revealed a more efficient activation in less polar solvents and a pronounced effect of solvent (and catalyst) on endo : exo diastereomeric ratio. Finally, new chiral chalcogen bonding catalysts were applied but provided only racemic mixtures of the product.


Asunto(s)
Iminas , Selenio , Reacción de Cicloadición , Selenio/química , Solventes , Telurio/química
7.
J Org Chem ; 87(3): 1661-1668, 2022 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-34181414

RESUMEN

Recently, a tellurium-based chalcogen-bond-catalyzed nitro-Michael reaction was reported ( Angew. Chem. Int. Ed. 2019, 58, 16923), taking advantage of the strong Lewis acidity of the catalyst. This species was found to be more effective than an analogous iodine-based halogen bond organocatalyst. Herein, we present a detailed mechanistic and kinetic analysis of these catalytic cycles including the influence of the solvent (and the performance of different intrinsic solvation models). While the chalcogen bonding interaction is fundamental to activate the C-C bond formation, we found that the presence of a two-water molecular bridge is critical to allow the following, otherwise high-energy proton transfer step. Even though the iodine-based halogen bonding interaction is stronger than the tellurium-based chalcogen bonding one, which makes the former a stronger Lewis acid and hence in principle a more efficient catalyst, solvation effects explain the smaller energy span of the latter.

8.
Chemistry ; 27(67): 16530-16542, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34409662

RESUMEN

Halogen bonding occurs between molecules featuring Lewis acidic halogen substituents and Lewis bases. It is often rationalized as a predominantly electrostatic interaction and thus interactions between ions of like charge (e. g., of anionic halogen bond donors with halides) seem counter-intuitive. Herein, we provide an overview on such complexes. First, theoretical studies are described and their findings are compared. Next, experimental evidences are presented in the form of crystal structure database analyses, recent examples of strong "anti-electrostatic" halogen bonding in crystals, and the observation of such interactions also in solution. We then compare these complexes to select examples of "counter-intuitive" adducts formed by other interactions, like hydrogen bonding. Finally, we comment on key differences between charge-transfer and electrostatic polarization.

9.
Chem Rec ; 21(8): 1912-1927, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34145711

RESUMEN

Halogen bonding, the non-covalent interaction of Lewis bases with an electron-deficient region of halogen substituents, received increased attention recently. Consequently, the design and evaluation of numerous halogen-containing species as halogen bond donors have been subject to intense research. More recently, organoiodine compounds at the iodine(III) state have been receiving growing attention in the field. Due to their electronic and structural properties, they provide access to unique binding modes. For this reason, our groups have been involved in the development of such compounds, in the quantification of their halogen bonding strength (through the evaluation of their Lewis acidities), as well as in the evaluation of their activities as catalysts in several model reactions. This account will describe these contributions.

10.
Org Biomol Chem ; 19(4): 770-774, 2021 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-33432958

RESUMEN

A series of cationic monodentate and bidentate iodo(benz)imidazolium-based halogen bond (XB) donors were employed as catalysts in a Mukaiyama aldol reaction. While 5 mol% of a monodentate variant showed noticeable activity, a syn-preorganized bidentate XB donor provided a strong performance even with 0.5 mol% loading. In contrast to the very active BArF4 salts, PF6 or OTf salts were either inactive or showed background reaction through Lewis base catalysis. Repetition experiments clearly ruled out a potential hidden catalysis by elemental iodine and demonstrated the stability of our catalyst over three consecutive cycles.

11.
Phys Chem Chem Phys ; 23(4): 3041-3049, 2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-33480927

RESUMEN

The ONIOM scheme M052X/[Def2TZVP+Def2TZVPD.ECP(I)]:AM1 is shown to represent halogen bond (XB) geometries nearly as well as DFT while being more than two orders of magnitude faster in systems containing >40 atoms. This finding is shown to hold for 40 XB donors, which cover most known backbones, and for a range of neutral and anionic Lewis bases. Complexation free energies can be accurately computed using these geometries and a single-point energy calculation at the DFT level. This approach circumvents the unfavorable scaling of computing time associated with modeling large systems involving halogen bonding.

12.
Angew Chem Int Ed Engl ; 60(10): 5069-5073, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33215804

RESUMEN

In contrast to iodine(I)-based halogen bond donors, iodine(III)-derived ones have only been used as Lewis acidic organocatalysts in a handful of examples, and in all cases they acted in a monodentate fashion. Herein, we report the first application of a bidentate bis(iodolium) salt as organocatalyst in a Michael and a nitro-Michael addition reaction as well as in a Diels-Alder reaction that had not been activated by noncovalent organocatalysts before. In all cases, the performance of this bidentate XB donor distinctly surpassed the one of arguably the currently strongest iodine(I)-based organocatalyst. Bidentate coordination to the substrate was corroborated by a structural analysis and by DFT calculations of the transition states. Overall, the catalytic activity of the bis(iodolium) system approaches that of strong Lewis acids like BF3 .

13.
Angew Chem Int Ed Engl ; 60(14): 7920-7926, 2021 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-33438798

RESUMEN

An enantioselective sulfimidation of 3-thiosubstituted 2-quinolones and 2-pyridones was achieved with a stoichiometric nitrene source (PhI=NNs) and a silver-based catalyst system. Key to the success of the reaction is the use of a chiral phenanthroline ligand with a hydrogen bonding site. The enantioselectivity does not depend on the size of the two substituents at the sulfur atom but only on the binding properties of the heterocyclic lactams. A total of 21 chiral sulfimides were obtained in high yields (44-99 %) and with significant enantiomeric excess (70-99 % ee). The sulfimidation proceeds with high site-selectivity and can also be employed for the kinetic resolution of chiral sulfoxides. Mechanistic evidence suggests the intermediacy of a heteroleptic silver complex, in which the silver atom is bound to one molecule of the chiral ligand and one molecule of an achiral 1,10-phenanthroline. Support for the suggested reaction course was obtained by ESI mass spectrometry, DFT calculations, and a Hammett analysis.

14.
J Am Chem Soc ; 142(19): 8633-8640, 2020 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-32286829

RESUMEN

"Hypervalent" iodine(III) derivatives have been established as powerful reagents in organic transformations, but so far only a handful of studies have addressed their potential use as halogen-bonding noncovalent Lewis acids. In contrast to "classical" halogen-bond donors based on iodine(I) compounds, iodine(III) salts feature two directional electrophilic axes perpendicular to each other. Herein we present the first systematic investigation on biaxial binding to such Lewis acids in solution. To this end, hindered and unhindered iodolium species were titrated with various substrates, including diesters and diamides, via 1H NMR spectroscopy and isothermal titration calorimetry. Clear evidence for biaxial binding was obtained in two model systems, and the association strengths increased by 2 orders of magnitude. These findings were corroborated by density functional theory calculations (which reproduced the trend well but underestimated the absolute binding constants) and a cocrystal featuring biaxial coordination of a diamide to the unhindered iodolium compound.

15.
Chemistry ; 26(17): 3843-3861, 2020 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-31943430

RESUMEN

Halogen-bond donors (halogen-based Lewis acids) have now found various applications in diverse fields of chemistry. The goal of this study was to identify a parameter obtainable from a single DFT calculation that reliably describes halogen-bonding strength (Lewis acidity). First, several DFT methods were benchmarked against the CCSD(T) CBS binding data of complexes of 17 carbon-based halogen-bond donors with chloride and ammonia as representative Lewis bases, which revealed M05-2X with a partially augmented def2-TZVP(D) basis set as the best model chemistry. The best single parameter to predict halogen-bonding strengths was the static σ-hole depth, but it still provided inaccurate predictions for a series of compounds. Thus, a more reliable parameter, Ωσ* , has been developed through the linear combination of the σ-hole depth and the σ*(C-I) energy, which was further validated against neutral, cationic, halogen- and nitrogen-based halogen-bond donors with very good performance.

16.
Chemistry ; 26(7): 1567-1575, 2020 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-31638284

RESUMEN

The combination of singly or doubly bidentate halogen-bond donors with double bidentate acceptors was investigated as a supramolecular synthon in crystal engineering. The crystal topologies obtained feature novel halogen-bonding motifs like double two-point recognition and infinite chains or networks based on two-point interactions. Induced conformational changes in the double bidentate halogen-bond donors could be exploited to obtain different 1D and 2D networks. All solid-state studies were accompanied by DFT calculations to predict and rationalize the outcome.

17.
Chemistry ; 26(6): 1258-1262, 2020 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-31729084

RESUMEN

In the last years the use of chalcogen bonding-the noncovalent interaction involving electrophilic chalcogen centers-in noncovalent organocatalysis has received increased interest, particularly regarding the use of intermolecular Lewis acids. Herein, we present the first use of tellurium-based catalysts for the activation of a carbonyl compound (and only the second such activation by chalcogen bonding in general). As benchmark reaction, the Michael-type addition between trans-crotonophenone and 1-methylindole (and its derivatives) was investigated in the presence of various catalyst candidates. Whereas non-chalcogen-bonding reference compounds were inactive, strong rate accelerations of up to 1000 could be achieved by bidentate triazolium-based chalcogen bond donors, with product yields of >90 % within 2 h of reaction time. Organotellurium derivatives were markedly more active than their selenium and sulphur analogues and non-coordinating counterions like BArF 4 provide the strongest dicationic catalysts.

18.
Chemistry ; 26(23): 5190-5194, 2020 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-32065432

RESUMEN

A chiral phosphoric acid with a 2,2'-binaphthol core was prepared that displays two thioxanthone moieties at the 3,3'-position as light-harvesting antennas. Despite its relatively low triplet energy, the phosphoric acid was found to be an efficient catalyst for the enantioselective intermolecular [2+2] photocycloaddition of ß-carboxyl-substituted cyclic enones (e.r. up to 93:7). Binding of the carboxylic acid to the sensitizer is suggested by NMR studies and by DFT calculations to occur by means of two hydrogen bonds. The binding event not only enables an enantioface differentiation but also modulates the triplet energy of the substrates.

19.
Chem Rev ; 123(17): 10527-10529, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37700678
20.
Angew Chem Int Ed Engl ; 59(27): 11150-11157, 2020 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-32227661

RESUMEN

Halogen bonding is often described as being driven predominantly by electrostatics, and thus adducts between anionic halogen bond (XB) donors (halogen-based Lewis acids) and anions seem counterintuitive. Such "anti-electrostatic" XBs have been predicted theoretically but for organic XB donors, there are currently no experimental examples except for a few cases of self-association. Reported herein is the synthesis of two negatively charged organoiodine derivatives that form anti-electrostatic XBs with anions. Even though the electrostatic potential is universally negative across the surface of both compounds, DFT calculations indicate kinetic stabilization of their halide complexes in the gas phase and particularly in solution. Experimentally, self-association of the anionic XB donors was observed in solid-state structures, resulting in dimers, trimers, and infinite chains. In addition, co-crystals with halides were obtained, representing the first cases of halogen bonding between an organic anionic XB donor and a different anion. The bond lengths of all observed interactions are 14-21 % shorter than the sum of the van der Waals radii.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA