Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Microbiol ; 115(4): 574-590, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33053232

RESUMEN

Extrachromosomal (ec) DNAs are genetic elements that exist separately from the genome. Since ecDNA can carry beneficial genes, they are a powerful adaptive mechanism in cancers and many pathogens. For the first time, we report ecDNA contributing to antimalarial resistance in Plasmodium falciparum, the most virulent human malaria parasite. Using pulse field gel electrophoresis combined with PCR-based copy number analysis, we detected two ecDNA elements that differ in migration and structure. Entrapment in the electrophoresis well and low susceptibility to exonucleases revealed that the biologically relevant ecDNA element is large and complex in structure. Using deep sequencing, we show that ecDNA originates from the chromosome and expansion of an ecDNA-specific sequence may improve its segregation or expression. We speculate that ecDNA is maintained using established mechanisms due to shared characteristics with the mitochondrial genome. Implications of ecDNA discovery in this organism are wide-reaching due to the potential for new strategies to target resistance development.


Asunto(s)
Resistencia a Medicamentos/genética , Genoma de Protozoos , Malaria Falciparum/prevención & control , Malaria Falciparum/parasitología , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Adaptación Fisiológica , Antimaláricos/farmacología , ADN Protozoario , Amplificación de Genes , Humanos , Pirimidinas/farmacología
2.
Nucleic Acids Res ; 47(4): 1615-1627, 2019 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-30576466

RESUMEN

Antimalarial resistance is a major obstacle in the eradication of the human malaria parasite, Plasmodium falciparum. Genome amplifications, a type of DNA copy number variation (CNV), facilitate overexpression of drug targets and contribute to parasite survival. Long monomeric A/T tracks are found at the breakpoints of many Plasmodium resistance-conferring CNVs. We hypothesize that other proximal sequence features, such as DNA hairpins, act with A/T tracks to trigger CNV formation. By adapting a sequence analysis pipeline to investigate previously reported CNVs, we identified breakpoints in 35 parasite clones with near single base-pair resolution. Using parental genome sequence, we predicted the formation of stable hairpins within close proximity to all future breakpoint locations. Especially stable hairpins were predicted to form near five shared breakpoints, establishing that the initiating event could have occurred at these sites. Further in-depth analyses defined characteristics of these 'trigger sites' across the genome and detected signatures of error-prone repair pathways at the breakpoints. We propose that these two genomic signals form the initial lesion (hairpins) and facilitate microhomology-mediated repair (A/T tracks) that lead to CNV formation across this highly repetitive genome. Targeting these repair pathways in P. falciparum may be used to block adaptation to antimalarial drugs.


Asunto(s)
ADN/genética , Genómica , Plasmodium falciparum/genética , Análisis de Secuencia de ADN/métodos , ADN/química , Variaciones en el Número de Copia de ADN , Genoma de Protozoos/genética , Humanos , Malaria Falciparum/parasitología , Conformación de Ácido Nucleico , Secuencias Repetitivas de Ácidos Nucleicos/genética
3.
Genome Med ; 13(1): 75, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33947449

RESUMEN

Single-cell genomics is a rapidly advancing field; however, most techniques are designed for mammalian cells. We present a single-cell sequencing pipeline for an intracellular parasite, Plasmodium falciparum, with a small genome of extreme base content. Through optimization of a quasi-linear amplification method, we target the parasite genome over contaminants and generate coverage levels allowing detection of minor genetic variants. This work, as well as efforts that build on these findings, will enable detection of parasite heterogeneity contributing to P. falciparum adaptation. Furthermore, this study provides a framework for optimizing single-cell amplification and variant analysis in challenging genomes.


Asunto(s)
Composición de Base , Genoma de Protozoos , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Plasmodium/genética , Análisis de la Célula Individual , Biología Computacional/métodos , Variaciones en el Número de Copia de ADN , Eritrocitos/parasitología , Genómica/métodos , Humanos , Malaria/parasitología , Plasmodium falciparum/genética , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN , Análisis de la Célula Individual/métodos
4.
Front Microbiol ; 11: 1930, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32849480

RESUMEN

Plasmodium vivax is increasingly the dominant species of malaria in the Greater Mekong Subregion (GMS), which is pursuing regional malaria elimination. P. vivax lineages in the GMS are poorly characterized. Currently, P. vivax reference genomes are scarce due to difficulties in culturing the parasite and lack of high-quality samples. In addition, P. vivax is incredibly diverse, necessitating the procurement of reference genomes from different geographical regions. Here we present four new P. vivax draft genomes assembled de novo from clinical samples collected in the China-Myanmar border area. We demonstrate comparable length and content to existing genomes, with the majority of structural variation occurring around subtelomeric regions and exported proteins, which we corroborated with detection of copy number variations in these regions. We predicted peptides from all PIR gene subfamilies, except for PIR D. We confirmed that proteins classically labeled as PIR D family members are not identifiable by PIR motifs, and actually bear stronger resemblance to DUF (domain of unknown function) family DUF3671, potentially pointing to a new, closely related gene family. Further, phylogenetic analyses of MSP7 genes showed high variability within the MSP7-B family compared to MSP7-A and -C families, and the result was comparable to that from whole genome analyses. The new genome assemblies serve as a resource for studying P. vivax within the GMS.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA