RESUMEN
Long-term environmental change, sudden pulses of extreme perturbation, or a combination of both can trigger regime shifts by changing the processes and feedbacks which determine community assembly, structure, and function, altering the state of ecosystems. Our understanding of the mechanisms that stabilise against regime shifts or lock communities into altered states is limited, yet also critical to anticipating future states, preventing regime shifts, and reversing unwanted state change. Ocean acidification contributes to the restructuring and simplification of algal systems, however the mechanisms through which this occurs and whether additional drivers are involved requires further study. Using monthly surveys over three years at a shallow-water volcanic seep we examined how the composition of algal communities change seasonally and following periods of significant physical disturbance by typhoons at three levels of ocean acidification (equivalent to means of contemporary â¼350 and future â¼500 and 900 µatm pCO2). Sites exposed to acidification were increasingly monopolised by structurally simple, fast-growing turf algae, and were clearly different to structurally complex macrophyte-dominated reference sites. The distinct contemporary and acidified community states were stabilised and maintained at their respective sites by different mechanisms following seasonal typhoon disturbance. Macroalgal-dominated sites were resistant to typhoon damage. In contrast, significant losses of algal biomass represented a near total ecosystem reset by typhoons for the turf-dominated communities at the elevated pCO2 sites (i.e. negligible resistance). A combination of disturbance and subsequent turf recovery maintained the same simplified state between years (elevated CO2 levels promote turf growth following algal removal, inhibiting macroalgal recruitment). Thus, ocean acidification may promote shifts in algal systems towards degraded ecosystem states, and short-term disturbances which reset successional trajectories may 'lock-in' these alternative states of low structural and functional diversity.
Asunto(s)
Tormentas Ciclónicas , Ecosistema , Agua de Mar/química , Concentración de Iones de Hidrógeno , Acidificación de los OcéanosRESUMEN
Indo-Pacific lionfish have become invasive throughout the western Atlantic. Their predatory effects have been the focus of much research and are suggested to cause declines in native fish abundance and diversity across the invaded range. However, little is known about their non-consumptive effects, or their effects on invertebrates. Lionfish use shelters on the reef, thus there is potential for competition with other shelter-dwelling organisms. We demonstrate similar habitat associations between invasive lionfish, native spiny lobsters (Panulirus argus) and native long-spined sea urchins (Diadema antillarum), indicating the potential for competition. We then used a laboratory experiment to compare activity and shelter use of each species when alone and when lionfish were paired with each native species. Spiny lobsters increased their activity but did not change their shelter use in the presence of a lionfish, whilst long-spined sea urchins changed neither their activity nor shelter use. However, lionfish reduced their shelter use in the presence of spiny lobsters and long-spined sea urchins. This study highlights the importance not only of testing for the non-consumptive effects of invasive species, but also exploring whether native species exert non-consumptive effects on the invasive.