Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Phys Rev Lett ; 131(6): 063001, 2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37625070

RESUMEN

^{133}Ba^{+} is illuminated by a laser that is far detuned from optical transitions, and the resulting spontaneous Raman scattering rate is measured. The observed scattering rate is lower than previous theoretical estimates. The majority of the discrepancy is explained by a more accurate treatment of the scattered photon density of states. This work establishes that, contrary to previous models, there is no fundamental atomic physics limit to laser-driven quantum gates from laser-induced spontaneous Raman scattering.

2.
Proc Natl Acad Sci U S A ; 117(33): 19685-19693, 2020 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-32727904

RESUMEN

Stacking layers of atomically thin transition-metal carbides and two-dimensional (2D) semiconducting transition-metal dichalcogenides, could lead to nontrivial superconductivity and other unprecedented phenomena yet to be studied. In this work, superconducting α-phase thin molybdenum carbide flakes were first synthesized, and a subsequent sulfurization treatment induced the formation of vertical heterolayer systems consisting of different phases of molybdenum carbide-ranging from α to γ' and γ phases-in conjunction with molybdenum sulfide layers. These transition-metal carbide/disulfide heterostructures exhibited critical superconducting temperatures as high as 6 K, higher than that of the starting single-phased α-Mo2C (4 K). We analyzed possible interface configurations to explain the observed moiré patterns resulting from the vertical heterostacks. Our density-functional theory (DFT) calculations indicate that epitaxial strain and moiré patterns lead to a higher interfacial density of states, which favors superconductivity. Such engineered heterostructures might allow the coupling of superconductivity to the topologically nontrivial surface states featured by transition-metal carbide phases composing these heterostructures potentially leading to unconventional superconductivity. Moreover, we envisage that our approach could also be generalized to other metal carbide and nitride systems that could exhibit high-temperature superconductivity.

3.
Langmuir ; 37(13): 3960-3969, 2021 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-33729812

RESUMEN

Selective functionalization of dielectric surfaces is required for area-selective atomic layer deposition and etching. We have identified precursors for the selective gas-phase functionalization of plasma-deposited SiO2 and SiNx surfaces with hydrocarbons. The corresponding reaction mechanism of the precursor molecules with the two surfaces was studied using in situ surface infrared spectroscopy. We show that at a substrate temperature of 70 °C, cyclic azasilanes preferentially react with an -OH-terminated SiO2 surface over a -NHx-terminated SiNx surface with an attachment selectivity of ∼5.4, which is limited by the partial oxidation of the SiNx surface. The cyclic azasilane undergoes a ring-opening reaction where the Si-N bond cleaves upon the reaction with surface -OH groups forming a Si-O-Si linkage. After ring opening, the backbone of the grafted hydrocarbon is terminated with a secondary amine, -NHCH3, which can react with water to form an -OH-terminated surface and release CH3NH2 as the product. The surface coverage of the grafted cyclic azasilane is calculated as ∼3.3 × 1014 cm-2, assuming that each reacted -OH group contributes to one hydrocarbon linkage. For selective attachment to SiNx over SiO2 surfaces, we determined the reaction selectivity of aldehydes. We demonstrate that aldehydes selectively attach to SiNx over SiO2 surfaces, and for the specific branched aliphatic aldehyde used in this work, almost no reaction was detected with the SiO2 surface. A fraction of the aldehyde molecules reacts with surface -NH2 groups to form an imine (Si-N═C) surface linker with H2O released as the byproduct. The other fraction of the aldehydes also reacts with surface -NH2 groups but do not undergo the water-elimination step and remains attached to the surface as an aminoalcohol (Si-NH-COH-). The surface coverage of the grafted aldehyde is calculated as ∼9.8 × 1014 cm-2 using a known infrared absorbance cross-section for the -C(CH3)3 groups.

4.
Nano Lett ; 20(5): 3113-3121, 2020 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-32134680

RESUMEN

Numerous theoretically proposed devices and novel phenomena have sought to take advantage of the intense pseudogauge fields that can arise in strained graphene. Many of these proposals, however, require fields to oscillate with a spatial frequency smaller than the magnetic length, while to date only the generation and effects of fields varying at a much larger length scale have been reported. Here, we describe the creation of short wavelength, periodic pseudogauge-fields using rippled graphene under extreme (>10%) strain and study of its effects on Dirac electrons. Combining scanning tunneling microscopy and atomistic calculations, we find that spatially oscillating strain generates a new quantization different from the familiar Landau quantization. Graphene ripples also cause large variations in carbon-carbon bond length, creating an effective electronic superlattice within a single graphene sheet. Our results thus also establish a novel approach of synthesizing effective 2D lateral heterostructures by periodically modulating lattice strain.

5.
Phys Rev Lett ; 125(12): 120501, 2020 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-33016736

RESUMEN

The interaction between the electric dipole moment of a trapped molecular ion and the phonon modes of the confined Coulomb crystal couples the orientation of the molecule to its motion. We consider the practical feasibility of harnessing this interaction to initialize, process, and read out quantum information encoded in molecular ion qubits without ever optically illuminating the molecules. We present two schemes wherein a molecular ion can be entangled with a cotrapped atomic ion qubit, providing, among other things, a means for molecular state preparation and measurement. We also show that virtual phonon exchange can significantly boost the range of the intermolecular dipole-dipole interaction, allowing strong coupling between widely separated molecular ion qubits.

6.
Phys Chem Chem Phys ; 22(30): 17075-17090, 2020 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-32699869

RESUMEN

Optical cycling, a continuous photon scattering off atoms or molecules, plays a central role in the quantum information science. While optical cycling has been experimentally achieved for many neutral species, few molecular ions have been investigated. We present a systematic theoretical search for diatomic molecular ions suitable for optical cycling using equation-of-motion coupled-cluster methods. Inspired by the electronic structure patterns of laser-cooled neutral molecules, we establish the design principles for molecular ions and explore various possible cationic molecular frameworks. The results show that finding a perfect molecular ion for optical cycling is challenging, yet possible. Among various possible diatomic molecules we suggest several candidates, which require further attention from both theory and experiment: YF+, SiO+, PN+, SiBr+, and BO+.

7.
Phys Chem Chem Phys ; 22(43): 24964-24973, 2020 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-33140766

RESUMEN

Dipole-phonon quantum logic (DPQL) leverages the interaction between polar molecular ions and the motional modes of a trapped-ion Coulomb crystal to provide a potentially scalable route to quantum information science. Here, we study a class of candidate molecular ions for DPQL, the cationic alkaline-earth monoxides and monosulfides, which possess suitable structure for DPQL and can be produced in existing atomic ion experiments with little additional complexity. We present calculations of DPQL operations for one of these molecules, CaO+, and discuss progress towards experimental realization. We also further develop the theory of DPQL to include state preparation and measurement and entanglement of multiple molecular ions.

8.
Phys Rev Lett ; 122(23): 233401, 2019 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-31298913

RESUMEN

Using a recently developed method for precisely controlling collision energy, we observe a dramatic suppression of inelastic collisions between an atom and ion (Ca+Yb^{+}) at low collision energy. This suppression, which is expected to be a universal phenomenon, arises when the spontaneous emission lifetime of the excited state is comparable to or shorter than the collision complex lifetime. We develop a technique to remove this suppression and engineer excited-state interactions. By dressing the system with a strong catalyst laser, a significant fraction of the collision complexes can be excited at a specified atom-ion separation. This technique allows excited-state collisions to be studied, even at ultracold temperature, and provides a general method for engineering ultracold excited-state interactions.

9.
Phys Chem Chem Phys ; 21(26): 14005-14011, 2019 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-30620013

RESUMEN

Low temperature reactions between laser-cooled Be+(2S1/2) ions and partially deuterated water (HOD) molecules have been investigated using an ion trap and interpreted with zero-point corrected quasi-classical trajectory calculations on a highly accurate global potential energy surface for the ground electronic state. Both product channels have been observed for the first time, and the branching to BeOD+ + H is found to be 0.58 ± 0.14. The experimental observation is reproduced by both quasi-classical trajectory and statistical calculations. Theoretical analyses reveal that the branching to the two product channels is largely due to the availability of open states in each channel.

10.
Nature ; 495(7442): 490-4, 2013 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-23538830

RESUMEN

Compared with atoms, molecules have a rich internal structure that offers many opportunities for technological and scientific advancement. The study of this structure could yield critical insights into quantum chemistry, new methods for manipulating quantum information, and improved tests of discrete symmetry violation and fundamental constant variation. Harnessing this potential typically requires the preparation of cold molecules in their quantum rovibrational ground state. However, the molecular internal structure severely complicates efforts to produce such samples. Removal of energy stored in long-lived vibrational levels is particularly problematic because optical transitions between vibrational levels are not governed by strict selection rules, which makes laser cooling difficult. Additionally, traditional collisional, or sympathetic, cooling methods are inefficient at quenching molecular vibrational motion. Here we experimentally demonstrate that the vibrational motion of trapped BaCl(+) molecules is quenched by collisions with ultracold calcium atoms at a rate comparable to the classical scattering, or Langevin, rate. This is over four orders of magnitude more efficient than traditional sympathetic cooling schemes. The high cooling rate, a consequence of a strong interaction potential (due to the high polarizability of calcium), along with the low collision energies involved, leads to molecular samples with a vibrational ground-state occupancy of at least 90 per cent. Our demonstration uses a novel thermometry technique that relies on relative photodissociation yields. Although the decrease in vibrational temperature is modest, with straightforward improvements it should be possible to produce molecular samples with a vibrational ground-state occupancy greater than 99 per cent in less than 100 milliseconds. Because sympathetic cooling of molecular rotational motion is much more efficient than vibrational cooling in traditional systems, we expect that the method also allows efficient cooling of the rotational motion of the molecules. Moreover, the technique should work for many different combinations of ultracold atoms and molecules.

11.
Proc Natl Acad Sci U S A ; 113(51): 14793-14798, 2016 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-27930335

RESUMEN

Chromosome instability (CIN) is the most striking feature of human cancers. However, how CIN drives tumor progression to metastasis remains elusive. Here we studied the role of chromosome content changes in generating the phenotypic dynamics that are required for metastasis. We isolated epithelial and mesenchymal clones from human carcinoma cell lines and showed that the epithelial clones were able to generate mesenchymal variants, which had the potential to further produce epithelial revertants autonomously. The successive acquisition of invasive mesenchymal and then epithelial phenotypes recapitulated the steps in tumor progression to metastasis. Importantly, the generation of mesenchymal variants from clonal epithelial populations was associated with subtle changes in chromosome content, which altered the chromosome transcriptome and influenced the expression of genes encoding intercellular junction (IJ) proteins, whereas the loss of chromosome 10p, which harbors the ZEB1 gene, was frequently detected in epithelial variants generated from mesenchymal clones. Knocking down these IJ genes in epithelial cells induced a mesenchymal phenotype, whereas knocking down the ZEB1 gene in mesenchymal cells induced an epithelial phenotype, demonstrating a causal role of chromosome content changes in phenotypic determination. Thus, our studies suggest a paradigm of tumor metastasis: primary epithelial carcinoma cells that lose chromosomes harboring IJ genes acquire an invasive mesenchymal phenotype, and subsequent chromosome content changes such as loss of 10p in disseminated mesenchymal cells generate epithelial variants, which can be selected for to generate epithelial tumors during metastatic colonization.


Asunto(s)
Inestabilidad Cromosómica , Metástasis de la Neoplasia , Neoplasias/patología , Aneuploidia , Biomarcadores de Tumor , Línea Celular Tumoral , Clonación Molecular , Progresión de la Enfermedad , Células Epiteliales/patología , Transición Epitelial-Mesenquimal/genética , Epitelio/patología , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Hibridación Fluorescente in Situ , Cariotipificación , Mesodermo/patología , Neoplasias/genética , Fenotipo
12.
Langmuir ; 34(48): 14489-14497, 2018 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-30375874

RESUMEN

The reaction mechanism of propanoyl chloride (C2H5COCl) with -SiOH-terminated SiO2 films was studied using in situ surface infrared spectroscopy. We show that this surface functionalization reaction is temperature dependent. At 230 °C, C2H5COCl reacts with isolated surface -SiOH groups to form the expected ester linkage. Surprisingly, as the temperature is lowered to 70 °C, the ketone groups are transformed into the enol tautomer, but if the temperature is increased back to the starting exposure temperature of 230 °C, the ketone tautomer is not recovered, indicating that the enol form is thermally stable over a wide range of temperatures. Further, the enol form is directly formed after exposure of a SiO2 surface to C2H5COCl at 70 °C. We speculate that the enol form, which is energetically unfavorable, is stabilized because of hydrogen bonding with adjacent enol groups or through hydrogen bonding with unreacted surface -SiOH groups. The surface coverage of hydrocarbon molecules is calculated as ∼6 × 1012 cm-2, assuming each reacted -SiOH group contributes to one hydrocarbon linkage on the surface. At a substrate temperature of 70 °C, the enol form is unreactive with H2O, and H2O molecules simply physisorb on the surface. At higher temperatures, H2O converts the ketone to the enol tautomer and reacts with Si-O-Si bridges, forming more -SiOH reactive sites. The overall hydrocarbon coverage on the surface can then be further increased through cycling H2O and C2H5COCl doses.

13.
Phys Rev Lett ; 119(10): 100501, 2017 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-28949151

RESUMEN

^{133}Ba^{+} has been identified as an attractive ion for quantum information processing due to the unique combination of its spin-1/2 nucleus and visible wavelength electronic transitions. Using a microgram source of radioactive material, we trap and laser cool the synthetic A=133 radioisotope of barium II in a radio-frequency ion trap. Using the same, single trapped atom, we measure the isotope shifts and hyperfine structure of the 6^{2}P_{1/2}↔6^{2}S_{1/2} and 6^{2}P_{1/2}↔5^{2}D_{3/2} electronic transitions that are needed for laser cooling, state preparation, and state detection of the clock-state hyperfine and optical qubits. We also report the 6^{2}P_{1/2}↔5^{2}D_{3/2} electronic transition isotope shift for the rare A=130 and 132 barium nuclides, completing the spectroscopic characterization necessary for laser cooling all long-lived barium II isotopes.

14.
Phys Rev Lett ; 114(25): 253001, 2015 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-26197124

RESUMEN

We report the results of a direct search for the (229)Th (I(π)=3/2(+)←5/2(+)) nuclear isomeric transition, performed by exposing (229)Th-doped LiSrAlF(6) crystals to tunable vacuum-ultraviolet synchrotron radiation and observing any resulting fluorescence. We also use existing nuclear physics data to establish a range of possible transition strengths for the isomeric transition. We find no evidence for the thorium nuclear transition between 7.3 eV and 8.8 eV with transition lifetime (1-2) s≲τ≲(2000-5600) s. This measurement excludes roughly half of the favored transition search area and can be used to direct future searches.

15.
J Chem Phys ; 143(12): 124309, 2015 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-26429013

RESUMEN

We have performed a combined experimental and theoretical study of the photodissociation cross section of the molecular ion DyCl(+). The photodissociation cross section for the photon energy range 35,500 cm(-1) to 47,500 cm(-1) is measured using an integrated ion trap and time-of-flight mass spectrometer; we observe a broad, asymmetric profile that is peaked near 43,000 cm(-1). The theoretical cross section is determined from electronic potentials and transition dipole moments calculated using the relativistic configuration-interaction valence-bond and coupled-cluster methods. The electronic structure of DyCl(+) is extremely complex due to the presence of multiple open electronic shells, including the 4f(10) configuration. The molecule has nine attractive potentials with ionically bonded electrons and 99 repulsive potentials dissociating to a ground state Dy(+) ion and Cl atom. We explain the lack of symmetry in the cross section as due to multiple contributions from one-electron-dominated transitions between the vibrational ground state and several resolved repulsive excited states.

16.
Phys Rev Lett ; 112(14): 143009, 2014 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-24765957

RESUMEN

A single ion immersed in a neutral buffer gas is studied. An analytical model is developed that gives a complete description of the dynamics and steady-state properties of the ions. An extension of this model, using techniques employed in the mathematics of economics and finance, is used to explain the recent observation of non-Maxwellian statistics for these systems. Taken together, these results offer an explanation of the long-standing issues associated with sympathetic cooling of an ion by a neutral buffer gas.

17.
J Chem Phys ; 141(1): 014309, 2014 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-25005291

RESUMEN

The photodissociation cross-section of SrCl(+) is measured in the spectral range of 36,000-46,000 cm(-1) using a modular time-of-flight mass spectrometer (TOF-MS). By irradiating a sample of trapped SrCl(+) molecular ions with a pulsed dye laser, X(1)Σ(+) state molecular ions are electronically excited to the repulsive wall of the A(1)Π state, resulting in dissociation. Using the TOF-MS, the product fragments are detected and the photodissociation cross-section is determined for a broad range of photon energies. Detailed ab initio calculations of the SrCl(+) molecular potentials and spectroscopic constants are also performed and are found to be in good agreement with experiment. The spectroscopic constants for SrCl(+) are also compared to those of another alkaline earth halogen, BaCl(+), in order to highlight structural differences between the two molecular ions. This work represents the first spectroscopy and ab initio calculations of SrCl(+).

18.
Nano Lett ; 13(5): 1915-9, 2013 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-23614400

RESUMEN

We investigate the topological surface state properties at various surface cleaves in the topological insulator Bi2Se3, via first principles calculations and scanning tunneling microscopy/spectroscopy (STM/STS). While the typical surface termination occurs between two quintuple layers, we report the existence of a surface termination within a single quintuple layer where dangling bonds form with giant spin splitting owing to strong spin-orbit coupling. Unlike Rashba split states in a 2D electron gas, these states are constrained by the band topology of the host insulator with topological properties similar to the typical topological surface state, and thereby offer an alternative candidate for spintronics usage. We name these new states "topological dangling-bond states". The degree of the spin polarization of these states is greatly enhanced. Since dangling bonds are more chemically reactive, the observed topological dangling-bond states provide a new avenue for manipulating band dispersions and spin-textures by adsorbed atoms or molecules.

19.
J Phys Chem Lett ; 15(2): 590-597, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38198595

RESUMEN

Polyatomic molecules equipped with optical cycling centers (OCCs), enabling continuous photon scattering during optical excitation, are exciting candidates for advancing quantum information science. However, as these molecules grow in size and complexity, the interplay of complex vibronic couplings on optical cycling becomes a critical but relatively unexplored consideration. Here, we present an extensive exploration of Fermi resonances in large-scale OCC-containing molecules using high-resolution dispersed laser-induced fluorescence and excitation spectroscopy. These resonances manifest as vibrational coupling leading to intensity borrowing by combination bands near optically active harmonic bands, which require additional repumping lasers for effective optical cycling. To mitigate these effects, we explore altering the vibrational energy level spacing through substitutions on the phenyl ring or changes in the OCC itself. While the complete elimination of vibrational coupling in complex molecules remains challenging, our findings highlight significant mitigation possibilities, opening new avenues for optimizing optical cycling in large polyatomic molecules.

20.
J Phys Chem Lett ; 15(21): 5665-5673, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38767654

RESUMEN

Molecules cooled to ultracold temperatures are desirable for applications in fundamental physics and quantum information science. However, cooling polyatomic molecules with more than six atoms has not yet been achieved. Building on the idea of an optical cycling center (OCC), a moiety supporting a set of localized and isolated electronic states within a polyatomic molecule, molecules with two OCCs (bi-OCCs) may afford better cooling efficiency by doubling the photon scattering rate. By using quantum chemistry calculations, we assess the extent of the coupling of the two OCCs with each other and the molecular scaffold. We show that promising coolable bi-OCC molecules can be proposed by following chemical design principles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA