Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Mol Med ; 29(1): 4, 2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-36650454

RESUMEN

BACKGROUND: Inflammation, the physiological response to infection and injury, is coordinated by the immune and nervous systems. Interleukin-1ß (IL-1ß) and other cytokines produced during inflammatory responses activate sensory neurons (nociceptors) to mediate the onset of pain, sickness behavior, and metabolic responses. Although nociceptors expressing Transient Receptor Potential Ankyrin-1 (TRPA1) can initiate inflammation, comparatively little is known about the role of TRPA1 nociceptors in the physiological responses to specific cytokines. METHODS: To monitor body temperature in conscious and unrestrained mice, telemetry probes were implanted into peritoneal cavity of mice. Using transgenic and tissue specific knockouts and chemogenetic techniques, we recorded temperature responses to the potent pro-inflammatory cytokine IL-1ß. Using calcium imaging, whole cell patch clamping and whole nerve recordings, we investigated the role of TRPA1 during IL-1ß-mediated neuronal activation. Mouse models of acute endotoxemia and sepsis were used to elucidate how specific activation, with optogenetics and chemogenetics, or ablation of TRPA1 neurons can affect the outcomes of inflammatory insults. All statistical tests were performed with GraphPad Prism 9 software and for all analyses, P ≤ 0.05 was considered statistically significant. RESULTS: Here, we describe a previously unrecognized mechanism by which IL-1ß activates afferent vagus nerve fibers to trigger hypothermia, a response which is abolished by selective silencing of neuronal TRPA1. Afferent vagus nerve TRPA1 signaling also inhibits endotoxin-stimulated cytokine storm and significantly reduces the lethality of bacterial sepsis. CONCLUSION: Thus, IL-1ß activates TRPA1 vagus nerve signaling in the afferent arm of a reflex anti-inflammatory response which inhibits cytokine release, induces hypothermia, and reduces the mortality of infection. This discovery establishes that TRPA1, an ion channel known previously as a pro-inflammatory detector of cold, pain, itch, and a wide variety of noxious molecules, also plays a specific anti-inflammatory role via activating reflex anti-inflammatory activity.


Asunto(s)
Hipotermia Inducida , Hipotermia , Interleucina-1beta , Canales de Potencial de Receptor Transitorio , Animales , Ratones , Ancirinas/metabolismo , Citocinas/metabolismo , Hipotermia/metabolismo , Inflamación/metabolismo , Interleucina-1beta/metabolismo , Fibras Nerviosas/metabolismo , Dolor/metabolismo , Reflejo , Células Receptoras Sensoriales/metabolismo , Canales de Potencial de Receptor Transitorio/genética , Canales de Potencial de Receptor Transitorio/metabolismo , Canal Catiónico TRPA1/genética , Canal Catiónico TRPA1/metabolismo , Nervio Vago/metabolismo
2.
Proc Natl Acad Sci U S A ; 116(51): 25982-25990, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31792184

RESUMEN

Retrotransposons compose a staggering 40% of the mammalian genome. Among them, endogenous retroviruses (ERV) represent sequences that closely resemble the proviruses created from exogenous retroviral infection. ERVs make up 8 to 10% of human and mouse genomes and range from evolutionarily ancient sequences to recent acquisitions. Studies in Drosophila have provided a causal link between genomic retroviral elements and cognitive decline; however, in mammals, the role of ERVs in learning and memory remains unclear. Here we studied 2 independent murine models for ERV activation: muMT strain (lacking B cells and antibody production) and intracerebroventricular injection of streptozotocin (ICVI-STZ). We conducted behavioral assessments (contextual fear memory and spatial learning), as well as gene and protein analysis (RNA sequencing, PCR, immunohistochemistry, and western blot assays). Mice lacking mitochondrial antiviral-signaling protein (MAVS) and mice lacking stimulator of IFN genes protein (STING), 2 downstream sensors of ERV activation, provided confirmation of ERV impact. We found that muMT mice and ICVI-STZ mice induced hippocampal ERV activation, as shown by increased gene and protein expression of the Gag sequence of the transposable element intracisternal A-particle. ERV activation was accompanied by significant hippocampus-related memory impairment in both models. Notably, the deficiency of the MAVS pathway was protective against ICVI-STZ-induced cognitive pathology. Overall, our results demonstrate that ERV activation is associated with cognitive impairment in mice. Moreover, they provide a molecular target for strategies aimed at attenuating retroviral element sensing, via MAVS, to treat dementia and neuropsychiatric disorders.


Asunto(s)
Retrovirus Endógenos/genética , Hipocampo/virología , Trastornos de la Memoria/genética , Trastornos de la Memoria/metabolismo , Trastornos de la Memoria/virología , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Conducta Animal , Encéfalo/patología , Disfunción Cognitiva , Elementos Transponibles de ADN , Modelos Animales de Enfermedad , Retrovirus Endógenos/fisiología , Regulación de la Expresión Génica , Productos del Gen gag , Hipocampo/efectos de los fármacos , Aprendizaje , Masculino , Proteínas de la Membrana/metabolismo , Memoria , Trastornos de la Memoria/psicología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Estreptozocina/farmacología
3.
J Neural Eng ; 20(2)2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36920156

RESUMEN

Objective.Sensory nerves of the peripheral nervous system (PNS) transmit afferent signals from the body to the brain. These peripheral nerves are composed of distinct subsets of fibers and associated cell bodies, which reside in peripheral ganglia distributed throughout the viscera and along the spinal cord. The vagus nerve (cranial nerve X) is a complex polymodal nerve that transmits a wide array of sensory information, including signals related to mechanical, chemical, and noxious stimuli. To understand how stimuli applied to the vagus nerve are encoded by vagal sensory neurons in the jugular-nodose ganglia, we developed a framework for micro-endoscopic calcium imaging and analysis.Approach.We developed novel methods forin vivoimaging of the intact jugular-nodose ganglion using a miniature microscope (Miniscope) in transgenic mice with the genetically-encoded calcium indicator GCaMP6f. We adapted the Python-based analysis package Calcium Imaging Analysis (CaImAn) to process the resulting one-photon fluorescence data into calcium transients for subsequent analysis. Random forest classification was then used to identify specific types of neuronal responders.Results.We demonstrate that recordings from the jugular-nodose ganglia can be accomplished through careful surgical dissection and ganglia stabilization. Using a customized acquisition and analysis pipeline, we show that subsets of vagal sensory neurons respond to different chemical stimuli applied to the vagus nerve. Successful classification of the responses with a random forest model indicates that certain calcium transient features, such as amplitude and duration, are important for encoding these stimuli by sensory neurons.Significance.This experimental approach presents a new framework for investigating how individual vagal sensory neurons encode various stimuli on the vagus nerve. Our surgical and analytical approach can be applied to other PNS ganglia in rodents and other small animal species to elucidate previously unexplored roles for peripheral neurons in a diverse set of physiological functions.


Asunto(s)
Calcio , Ganglio Nudoso , Ratones , Animales , Ganglio Nudoso/metabolismo , Calcio/metabolismo , Nervio Vago , Células Receptoras Sensoriales/metabolismo , Vías Aferentes
4.
Bioelectron Med ; 9(1): 21, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37794457

RESUMEN

The emerging field of bioelectronic medicine (BEM) is poised to make a significant impact on the treatment of several neurological and inflammatory disorders. With several BEM therapies being recently approved for clinical use and others in late-phase clinical trials, the 2022 BEM summit was a timely scientific meeting convening a wide range of experts to discuss the latest developments in the field. The BEM Summit was held over two days in New York with more than thirty-five invited speakers and panelists comprised of researchers and experts from both academia and industry. The goal of the meeting was to bring international leaders together to discuss advances and cultivate collaborations in this emerging field that incorporates aspects of neuroscience, physiology, molecular medicine, engineering, and technology. This Meeting Report recaps the latest findings discussed at the Meeting and summarizes the main developments in this rapidly advancing interdisciplinary field. Our hope is that this Meeting Report will encourage researchers from academia and industry to push the field forward and generate new multidisciplinary collaborations that will form the basis of new discoveries that we can discuss at the next BEM Summit.

5.
Sci Transl Med ; 14(641): eabe9726, 2022 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-35442708

RESUMEN

The fetal brain is constantly exposed to maternal IgG before the formation of an effective blood-brain barrier (BBB). Here, we studied the consequences of fetal brain exposure to an antibody to the astrocytic protein aquaporin-4 (AQP4-IgG) in mice. AQP4-IgG was cloned from a patient with neuromyelitis optica spectrum disorder (NMOSD), an autoimmune disease that can affect women of childbearing age. We found that embryonic radial glia cells in neocortex express AQP4. These cells are critical for blood vessel and BBB formation through modulation of the WNT signaling pathway. Male fetuses exposed to AQP4-IgG had abnormal cortical vasculature and lower expression of WNT signaling molecules Wnt5a and Wnt7a. Positron emission tomography of adult male mice exposed in utero to AQP4-IgG revealed increased blood flow and BBB leakiness in the entorhinal cortex. Adult male mice exposed in utero to AQP4-IgG had abnormal cortical vessels, fewer dendritic spines in pyramidal and stellate neurons, and more S100ß+ astrocytes in the entorhinal cortex. Behaviorally, they showed impairments in the object-place memory task. Neural recordings indicated that their grid cell system, within the medial entorhinal cortex, did not map the local environment appropriately. Collectively, these data implicate in utero binding of AQP4-IgG to radial glia cells as a mechanism for alterations of the developing male brain and adds NMOSD to the conditions in which maternal IgG may cause persistent brain dysfunction in offspring.


Asunto(s)
Autoanticuerpos , Neuromielitis Óptica , Animales , Acuaporina 4/metabolismo , Barrera Hematoencefálica/metabolismo , Femenino , Humanos , Inmunoglobulina G , Masculino , Ratones
6.
Nat Biomed Eng ; 6(6): 683-705, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35361935

RESUMEN

Peripheral neurons that sense glucose relay signals of glucose availability to integrative clusters of neurons in the brain. However, the roles of such signalling pathways in the maintenance of glucose homoeostasis and their contribution to disease are unknown. Here we show that the selective activation of the nerve plexus of the hepatic portal system via peripheral focused ultrasound stimulation (pFUS) improves glucose homoeostasis in mice and rats with insulin-resistant diabetes and in swine subject to hyperinsulinemic-euglycaemic clamps. pFUS modulated the activity of sensory projections to the hypothalamus, altered the concentrations of metabolism-regulating neurotransmitters, and enhanced glucose tolerance and utilization in the three species, whereas physical transection or chemical blocking of the liver-brain nerve pathway abolished the effect of pFUS on glucose tolerance. Longitudinal multi-omic profiling of metabolic tissues from the treated animals confirmed pFUS-induced modifications of key metabolic functions in liver, pancreas, muscle, adipose, kidney and intestinal tissues. Non-invasive ultrasound activation of afferent autonomic nerves may represent a non-pharmacologic therapy for the restoration of glucose homoeostasis in type-2 diabetes and other metabolic diseases.


Asunto(s)
Diabetes Mellitus Experimental , Glucosa , Animales , Diabetes Mellitus Experimental/terapia , Glucosa/metabolismo , Homeostasis , Hipotálamo/metabolismo , Hígado/metabolismo , Ratones , Ratas , Porcinos
7.
Sci Rep ; 11(1): 5083, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33658532

RESUMEN

Obesity, a growing health concern, is associated with an increased risk of morbidity and mortality. Chronic low-grade inflammation is implicated in obesity-driven metabolic complications. Peripheral focused ultrasound stimulation (pFUS) is an emerging non-invasive technology that modulates inflammation. Here, we reasoned that focused ultrasound stimulation of the liver may alleviate obesity-related inflammation and other comorbidities. After 8 weeks on a high-fat high-carbohydrate "Western" diet, C57BL/6J mice were subjected to either sham stimulation or focused ultrasound stimulation at the porta hepatis. Daily liver-focused ultrasound stimulation for 8 weeks significantly decreased body weight, circulating lipids and mitigated dysregulation of adipokines. In addition, liver-focused ultrasound stimulation significantly reduced hepatic cytokine levels and leukocyte infiltration. Our findings demonstrate the efficacy of hepatic focused ultrasound for alleviating obesity and obesity-associated complications in mice. These findings suggest a previously unrecognized potential of hepatic focused ultrasound as a possible novel noninvasive approach in the context of obesity.


Asunto(s)
Metabolismo de los Lípidos/efectos de la radiación , Hígado/efectos de la radiación , Obesidad/sangre , Obesidad/terapia , Terapia por Ultrasonido/métodos , Adipoquinas/sangre , Tejido Adiposo/metabolismo , Tejido Adiposo/efectos de la radiación , Adiposidad/efectos de la radiación , Animales , Citocinas/sangre , Dieta Alta en Grasa/efectos adversos , Dieta Occidental/efectos adversos , Inflamación/metabolismo , Inflamación/terapia , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/etiología , Transducción de Señal/efectos de la radiación , Aumento de Peso/efectos de la radiación
8.
Nat Commun ; 11(1): 1403, 2020 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-32179753

RESUMEN

Patients with Systemic lupus erythematosus (SLE) experience various peripheral and central nervous system manifestations including spatial memory impairment. A subset of autoantibodies (DNRAbs) cross-react with the GluN2A and GluN2B subunits of the NMDA receptor (NMDAR). We find that these DNRAbs act as positive allosteric modulators on NMDARs with GluN2A-containing NMDARs, even those containing a single GluN2A subunit, exhibiting a much greater sensitivity to DNRAbs than those with exclusively GluN2B. Accordingly, GluN2A-specific antagonists provide greater protection from DNRAb-mediated neuronal cell death than GluN2B antagonists. Using transgenic mice to perturb expression of either GluN2A or GluN2B in vivo, we find that DNRAb-mediated disruption of spatial memory characterized by early neuronal cell death and subsequent microglia-dependent pathologies requires GluN2A-containing NMDARs. Our results indicate that GluN2A-specific antagonists or negative allosteric modulators are strong candidates to treat SLE patients with nervous system dysfunction.


Asunto(s)
Autoanticuerpos/inmunología , Lupus Eritematoso Sistémico/inmunología , Lupus Eritematoso Sistémico/psicología , Receptores de N-Metil-D-Aspartato/inmunología , Memoria Espacial , Animales , Muerte Celular , Femenino , Humanos , Lupus Eritematoso Sistémico/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/citología , Neuronas/inmunología , Receptores de N-Metil-D-Aspartato/genética
9.
Front Behav Neurosci ; 13: 121, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31231197

RESUMEN

Rationally designed behavioral tests are important tools to assess the function of specific brain regions. The hippocampus is a crucial neural substrate for spatial cognition, and many studies have linked hippocampal dysfunction with defects on spatial learning and memory in neurological conditions ranging from Alzheimer's disease to autoimmune syndromes, such as neuropsychiatric lupus. While our understanding of hippocampal function, from the molecular to the system levels, has increased dramatically over the last decades, this effort has not yet translated into efficacious therapies for cognitive impairment. We think that the availability of highly validated behavioral paradigms to measure cognition in mouse models is likely to enhance the potential success of preclinical therapeutic modalities. Here, we present an extensive study of the paddling pool task (PPT), first reported by Deacon and Rawlins, in which mice learn to escape from shallow water through a peripheral exit in a circular arena dubbed the clockmaze. We show that the PPT provides highly reliable results when assaying spatial cognition in C57/BL6 mice (120 males, 40 females) and BALB/c mice (40 males, 90 females). Additionally, we develop a robust algorithm for the assessment of escape strategies with clearly quantifiable readouts, enabling fine-granular phenotyping. Notably, the use of spatial strategy increases linearly across trials in the PPT. In a separate cohort of mice, we apply muscimol injections to silence the dorsal CA1 region of the hippocampus and show that the use of the spatial strategy in the PPT relies on the integrity of the dorsal hippocampus. Additionally, we compare directly the PPT and the Morris water maze (MWM) task in C57/BL6 mice (20 males, 20 females) and BALB/c mice (20 males, 20 females) and we find that the PPT induces significantly lower anxiety, exhaustion and hypothermia than the MWM. We conclude that the PPT provides a robust assessment of spatial cognition in mice, which can be applied in conjunction with other tests, to facilitate hypothesis testing and drug development to combat cognitive impairment.

10.
J Exp Med ; 215(10): 2554-2566, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30185634

RESUMEN

Cognitive impairment occurs in 40-90% of patients with systemic lupus erythematosus (SLE), which is characterized by autoantibodies to nuclear antigens, especially DNA. We discovered that a subset of anti-DNA antibodies, termed DNRAbs, cross reacts with the N-methyl-d-aspartate receptor (NMDAR) and enhances NMDAR signaling. In patients, DNRAb presence associates with spatial memory impairment. In a mouse model, DNRAb-mediated brain pathology proceeds through an acute phase of excitotoxic neuron loss, followed by persistent alteration in neuronal integrity and spatial memory impairment. The latter pathology becomes evident only after DNRAbs are no longer detectable in the brain. Here we investigate the mechanism of long-term neuronal dysfunction mediated by transient exposure to antibody. We show that activated microglia and C1q are critical mediators of neuronal damage. We further show that centrally acting inhibitors of angiotensin-converting enzyme (ACE) can prevent microglial activation and preserve neuronal function and cognitive performance. Thus, ACE inhibition represents a strong candidate for clinical trials aimed at mitigating cognitive dysfunction.


Asunto(s)
Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Anticuerpos Antinucleares/inmunología , Autoanticuerpos , Encéfalo , Lupus Eritematoso Sistémico/inmunología , Trastornos de la Memoria , Neuronas/inmunología , Animales , Autoanticuerpos/inmunología , Autoanticuerpos/toxicidad , Encéfalo/inmunología , Encéfalo/patología , Femenino , Lupus Eritematoso Sistémico/patología , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/inmunología , Trastornos de la Memoria/patología , Ratones , Ratones Endogámicos BALB C , Microglía , Neuronas/patología , Receptores de N-Metil-D-Aspartato/inmunología
11.
Immunol Res ; 63(1-3): 11-7, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26467973

RESUMEN

We present a succinct review of our approach to study the interactions between the DNA-reactive antibodies that cross-react with the GluN2A and GluN2B subunits of the N-methyl-D-aspartate receptor, denoted DNRABs, and their brain targets in subjects with neuropsychiatric systemic lupus erythematosus (NPSLE). We have analyzed the DNRAB-based brain symptomatology in mouse models of NPSLE by using an integrative neuroscience approach, which includes behavioral assessment coupled with electrophysiological studies of neural networks and synaptic connections in target brain regions, such as the CA1 region of the hippocampus. Our results suggest a framework for understanding the interactions between immune factors and neural networks.


Asunto(s)
Anticuerpos Antinucleares/metabolismo , Región CA1 Hipocampal/fisiología , Trastornos del Conocimiento/inmunología , Lupus Eritematoso Sistémico/inmunología , Red Nerviosa/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Reacciones Cruzadas , Humanos , Ratones , Neuroinmunomodulación , Receptores de N-Metil-D-Aspartato/inmunología
12.
EBioMedicine ; 2(7): 755-64, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26286205

RESUMEN

Patients with systemic lupus erythematosus (SLE) experience cognitive abnormalities in multiple domains including processing speed, executive function, and memory. Here we show that SLE patients carrying antibodies that bind DNA and the GluN2A and GluN2B subunits of the N-methyl-d-aspartate receptor (NMDAR), termed DNRAbs, displayed a selective impairment in spatial recall. Neural recordings in a mouse model of SLE, in which circulating DNRAbs penetrate the hippocampus, revealed that CA1 place cells exhibited a significant expansion in place field size. Structural analysis showed that hippocampal pyramidal cells had substantial reductions in their dendritic processes and spines. Strikingly, these abnormalities became evident at a time when DNRAbs were no longer detectable in the hippocampus. These results suggest that antibody-mediated neurocognitive impairments may be highly specific, and that spatial cognition may be particularly vulnerable to DNRAb-mediated structural and functional injury to hippocampal cells that evolves after the triggering insult is no longer present.


Asunto(s)
Autoanticuerpos/metabolismo , Cognición , Receptores de N-Metil-D-Aspartato/inmunología , Percepción Espacial , Adulto , Animales , Anticuerpos Antinucleares/inmunología , Membrana Celular/metabolismo , Dendritas/metabolismo , Femenino , Células HEK293 , Hipocampo/patología , Humanos , Lupus Eritematoso Sistémico/inmunología , Masculino , Ratones Endogámicos BALB C , Persona de Mediana Edad , Células Piramidales/metabolismo , Memoria Espacial
13.
Front Behav Neurosci ; 7: 202, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24381547

RESUMEN

N-methyl-D-aspartate receptors (NMDAR) in the hippocampus participate in encoding and recalling the location of objects in the environment, but the ensemble mechanisms by which NMDARs mediate these processes have not been completely elucidated. To address this issue, we examined the firing patterns of place cells in the dorsal CA1 area of the hippocampus of mice (n = 7) that performed an object place memory (OPM) task, consisting of familiarization (T1), sample (T2), and choice (T3) trials, after systemic injection of 3-[(±)2-carboxypiperazin-4yl]propyl-1-phosphate (CPP), a specific NMDAR antagonist. Place cell properties under CPP (CPP-PCs) were compared to those after control saline injection (SAL-PCs) in the same mice. We analyzed place cells across the OPM task to determine whether they signaled the introduction or movement of objects by NMDAR-mediated changes of their spatial coding. On T2, when two objects were first introduced to a familiar chamber, CPP-PCs and SAL-PCs showed stable, vanishing or moving place fields in addition to changes in spatial information (SI). These metrics were comparable between groups. Remarkably, previously inactive CPP-PCs (with place fields emerging de novo on T2) had significantly weaker SI increases than SAL-PCs. On T3, when one object was moved, CPP-PCs showed reduced center-of-mass (COM) shift of their place fields. Indeed, a subset of SAL-PCs with large COM shifts (>7 cm) was largely absent in the CPP condition. Notably, for SAL-PCs that exhibited COM shifts, those initially close to the moving object followed the trajectory of the object, whereas those far from the object did the opposite. Our results strongly suggest that the SI changes and COM shifts of place fields that occur during the OPM task reflect key dynamic properties that are mediated by NMDARs and might be responsible for binding object identity with location.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA