Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Cell Neurosci ; 35(2): 383-96, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17498969

RESUMEN

Drosophila larval crawling is a simple behavior that allows us to dissect the functions of specific neurons in the intact animal and explore the roles of genes in the specification of those neurons. By inhibiting subsets of neurons in the PNS, we have found that two classes of multidendritic neurons play a major role in larval crawling. The bipolar dendrites and class I mds send a feedback signal to the CNS that keeps the contraction wave progressing quickly, allowing smooth forward movement. Genetic manipulation of the sensory neurons suggests that this feedback depends on proper dendritic morphology and axon pathfinding to appropriate synaptic target areas in the CNS. Our data suggest that coordination of muscle activity in larval crawling requires feedback from neurons acting as proprioceptors, sending a "mission accomplished" signal in response to segment contraction, and resulting in rapid relaxation of the segment and propagation of the wave.


Asunto(s)
Retroalimentación , Movimiento/fisiología , Músculos/fisiología , Red Nerviosa/fisiología , Neuronas Aferentes/fisiología , Animales , Animales Modificados Genéticamente , Conducta Animal , Dendritas/fisiología , Drosophila , Proteínas de Drosophila/genética , Embrión no Mamífero , Proteínas Fluorescentes Verdes/biosíntesis , Modelos Biológicos , Neuronas Aferentes/citología , Grabación de Cinta de Video
2.
Dev Biol ; 287(2): 440-55, 2005 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-16183053

RESUMEN

Studies in genetic model organisms such as Drosophila have demonstrated that the homeotic complex (Hox) genes impart segmental identity during embryogenesis. Comparative studies in a wide range of other insect taxa have shown that the Hox genes are expressed in largely conserved domains along the anterior-posterior body axis, but whether they are performing the same functions in different insects is an open question. Most of the Hox genes have been studied functionally in only a few holometabolous insects that undergo metamorphosis. Thus, it is unclear how the Hox genes are functioning in the majority of direct-developing insects and other arthropods. To address this question, we used a combination of RNAi and in situ hybridization to reveal the expression, functions, and regulatory interactions of the Hox genes in the milkweed bug Oncopeltus fasciatus. Our results reveal many similarities and some interesting differences compared to Drosophila. We find that the gene Antennapedia is required for the identity of all three thoracic segments, while Ultrabithorax, abdominal-A and Abdominal-B cooperate to pattern the abdomen. The three abdominal genes exhibit posterior prevalence like in Drosophila, but apparently via some post-transcriptional mechanism. The functions of the head genes proboscipedia, Deformed, and Sex combs reduced were shown previously, and here we find that the complex temporal expression of pb in the labium is like that of other insects, but its regulatory relationship with Scr is unique. Overall, our data reveal that the evolution of insect Hox genes has included many small changes within general conservation of expression and function, and that the milkweed bug provides a useful model for understanding the roles of Hox genes in a direct-developing insect.


Asunto(s)
Genes Homeobox/fisiología , Genes de Insecto , Hemípteros/metabolismo , Animales , Tipificación del Cuerpo , Drosophila/genética , Hemípteros/genética , Morfogénesis , Interferencia de ARN
3.
Evol Dev ; 4(6): 459-99, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-12492146

RESUMEN

In recent years researchers have analyzed the expression patterns of the Hox genes in a multitude of arthropod species, with the hope of understanding the mechanisms at work in the evolution of the arthropod body plan. Now, with Hox expression data representing all four major groups of arthropods (chelicerates, myriapods, crustaceans, and insects), it seems appropriate to summarize the results and take stock of what has been learned. In this review we summarize the expression and functional data regarding the 10 arthropod Hox genes: labial proboscipedia, Hox3/zen, Deformed, Sex combs reduced, fushi tarazu, Antennapedia, Ultrabithorax, abdominal-A, and Abdominal-B. In addition, we discuss mechanisms of developmental evolutionary change thought to be important for the emergence of novel morphological features within the arthropods.


Asunto(s)
Artrópodos/anatomía & histología , Artrópodos/genética , Evolución Biológica , Genes Homeobox/fisiología , Proteínas Nucleares , Secuencia de Aminoácidos , Animales , Proteína con Homeodominio Antennapedia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Factores de Transcripción Fushi Tarazu , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Datos de Secuencia Molecular , Filogenia , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
Development ; 129(5): 1225-38, 2002 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11874918

RESUMEN

The diversity of the arthropod body plan has long been a fascinating subject of study. A flurry of recent research has analyzed Hox gene expression in various arthropod groups, with hopes of gaining insight into the mechanisms that underlie their evolution. The Hox genes have been analyzed in insects, crustaceans and chelicerates. However, the expression patterns of the Hox genes have not yet been comprehensively analyzed in a myriapod. We present the expression patterns of the ten Hox genes in a centipede, Lithobius atkinsoni, and compare our results to those from studies in other arthropods. We have three major findings. First, we find that Hox gene expression is remarkably dynamic across the arthropods. The expression patterns of the Hox genes in the centipede are in many cases intermediate between those of the chelicerates and those of the insects and crustaceans, consistent with the proposed intermediate phylogenetic position of the Myriapoda. Second, we found two 'extra' Hox genes in the centipede compared with those in Drosophila. Based on its pattern of expression, Hox3 appears to have a typical Hox-like role in the centipede, suggesting that the novel functions of the Hox3 homologs zen and bicoid were adopted somewhere in the crustacean-insect clade. In the centipede, the expression of the gene fushi tarazu suggests that it has both a Hox-like role (as in the mite), as well as a role in segmentation (as in insects). This suggests that this dramatic change in function was achieved via a multifunctional intermediate, a condition maintained in the centipede. Last, we found that Hox expression correlates with tagmatic boundaries, consistent with the theory that changes in Hox genes had a major role in evolution of the arthropod body plan.


Asunto(s)
Artrópodos/embriología , Artrópodos/genética , Tipificación del Cuerpo/genética , Proteínas de Drosophila , Genes Homeobox , Factores de Transcripción , Secuencia de Aminoácidos , Animales , Evolución Biológica , Proteínas de Unión al ADN/aislamiento & purificación , Factores de Transcripción Fushi Tarazu , Cabeza/embriología , Proteínas de Homeodominio/aislamiento & purificación , Proteínas de Insectos , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido
5.
Dev Biol ; 247(1): 47-61, 2002 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-12074551

RESUMEN

Segment formation is critical to arthropod development, yet there is still relatively little known about this process in most arthropods. Here, we present the expression patterns of the genes even-skipped (eve), engrailed, and wingless in a centipede, Lithobius atkinsoni. Despite some differences when compared with the patterns in insects and crustaceans, the expression of these genes in the centipede suggests that their basic roles are conserved across the mandibulate arthropods. For example, unlike the seven pair-rule stripes of eve expression in the Drosophila embryonic germband, the centipede eve gene is expressed strongly in the posterior of the embryo, and in only a few stripes between newly formed segments. Nonetheless, this pattern likely reflects a conserved role for eve in the process of segment formation, within the different context of a short-germband mode of embryonic development. In the centipede, the genes wingless and engrailed are expressed in stripes along the middle and posterior of each segment, respectively, similar to their expression in Drosophila. The adjacent expression of the engrailed and wingless stripes suggests that the regulatory relationship between the two genes may be conserved in the centipede, and thus this pathway may be a fundamental mechanism of segmental development in most arthropods.


Asunto(s)
Artrópodos/embriología , Artrópodos/genética , Proteínas Bacterianas , Proteínas de Drosophila/genética , Proteínas de Homeodominio/genética , Proteínas Proto-Oncogénicas/genética , Factores de Transcripción , Secuencia de Aminoácidos , Animales , Proteínas de Drosophila/biosíntesis , Embrión no Mamífero/embriología , Embrión no Mamífero/fisiología , Regulación del Desarrollo de la Expresión Génica , Genes de Insecto , Proteínas de Homeodominio/biosíntesis , Datos de Secuencia Molecular , Proteínas Proto-Oncogénicas/biosíntesis , Alineación de Secuencia , Proteína Wnt1
6.
Evol Dev ; 6(6): 393-401, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15509221

RESUMEN

Many embryonic patterning genes are remarkably conserved between vertebrates and invertebrates, and the Hox genes are paradigmatic examples of this conservation. Yet even Hox genes can change dramatically in evolution. Two genes in particular--Hox3 and fushi tarazu--lost their ancestral roles as homeotic genes and play very different developmental roles in the fruit fly Drosophila melanogaster. The Drosophila Hox3 homologs zerknullt and bicoid act in extraembryonic tissues and in establishment of the anteroposterior axis, respectively, whereas fushi tarazu acts in segmentation and neurogenesis. It would be valuable to know what mechanisms allowed Hox3 and ftz to abandon their ancestral roles as homeotic genes and take on new roles. To explore the evolutionary transition of these genes, we analyzed their expression in a primitive insect, the firebrat Thermobia domestica. The expression patterns seem to represent a stage of evolution intermediate between the ancestral state seen in basal arthropods and the derived expression patterns in Drosophila. These expression data help us to narrow the period in which the gene transitions took place. Hox3 appears to have evolved directly into zen within the insects, whereas ftz seems to have adopted the expression patterns of a segmentation and neurogenesis gene earlier in the mandibulate arthropods.


Asunto(s)
Tipificación del Cuerpo/fisiología , Proteínas de Unión al ADN/biosíntesis , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas de Homeodominio/biosíntesis , Proteínas de Insectos/biosíntesis , Insectos/embriología , Factores de Transcripción/biosíntesis , Secuencia de Aminoácidos , Animales , Evolución Biológica , Tipificación del Cuerpo/genética , Proteínas de Unión al ADN/genética , Factores de Transcripción Fushi Tarazu , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas de Homeodominio/genética , Proteínas de Insectos/genética , Insectos/genética , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA